
Offline Reinforcement Learning in
Autonomous Driving

Bachelor Thesis

by

Pascal Schindler
Degree Course: Industrial Engineering and Management B.Sc.

Matriculation Number: 1969739

Institute of Applied Informatics and Formal Description
Methods (AIFB)

KIT Department of Economics and Management

Advisor: Prof. Dr. J. Marius Zöllner
Second Advisor: Prof. Dr. Andreas Oberweis
Supervisor: M.Sc. Mohammd Karam Daaboul
Submitted: September 13, 2021

KIT – The Research University in the Helmholtz Association www.kit.edu

www.kit.edu

Abstract

Current online reinforcement algorithms struggle to utilize large and diverse datasets.
In contrast, offline reinforcement learning algorithms offer an efficient solution for this
problem. This paves the way for data-driven reinforcement learning. With the help of
offline reinforcement learning algorithms, it is now possible to apply reinforcement learning
in costly environments such as healthcare or autonomous driving. For this reason, we
tested one of the latest offline reinforcement learning algorithm, CQL, in the autonomous
driving environments CarRacing-v0 and Carla. We evaluated the CQL performance on
different datasets with different α values. The α value controls the conservatism of the
algorithm. Thereby, we tested the hypothesis that higher α values perform better the
better the dataset and lower α values perform better the worse the dataset. To this end,
we created expert datasets with excellent trajectories and imperfect datasets with noisy
trajectories. Furthermore, we evaluated the CQL performance in contrast to behavior
cloning and the state-of-the-art online reinforcement learning algorithm SAC.

CONTENTS ii

Contents

1 Introduction 1

1.1 Offline Reinforcement Learning in Autonomous Driving 1

1.2 Outline . 3

1.3 Notation . 4

2 Backround and Related Work 6

2.1 Deep Learning in Autonomous Driving . 6

2.2 Reinforcement Learning . 9

2.2.1 Markov Decision Process . 9

2.2.2 The Reinforcement Learning Goal 11

2.2.3 Value Functions and Bellman Equations 13

2.3 Off-Policy Reinforcement Learning . 15

2.3.1 Q-Learning and DQN . 16

2.3.2 Soft-Q-Learning (SQL) . 18

2.3.3 Soft-Actor-Critic Algorithm (SAC) 20

2.4 Offline Reinforcement Learning . 23

2.4.1 Policy Constraint Methods . 25

2.4.2 Lower-Bounded Policy-Values Methods 28

2.5 Behavior Cloning (BC) . 30

3 Approach 31

3.1 CarRacing-v0 . 31

3.1.1 Environment . 31

3.1.2 CarRacing-v0 SAC . 31

3.1.3 Dataset generation . 33

3.1.4 CQL Approach . 34

3.2 CARLA Environment . 37

3.2.1 Environment . 37

CONTENTS iii

3.2.2 Carla SAC . 39

3.2.3 Dataset generation . 40

3.2.4 CQL Approach . 41

4 Experiments 42

4.1 Results . 42

4.1.1 Performance CarRacing-v0 . 42

4.1.2 Performance Carla . 45

5 Conclusion 50

5.1 Discussion . 51

5.2 Outlook . 51

LIST OF ABBREVIATIONS iv

List of Abbreviations

ABS Anti-Lock Braking Systems.

AC Actor-Critic.

ACC Adaptive Cruise Control.

AI Artificial Intelligence.

ALVINN Autonomous Land Vehicle in A Neural Network.

AVs autonomous vehicle.

BC Behavior Cloning.

BEAR Bootstrapping Error Accumulation Reduction.

BRAC Behavioural Regularized Actor Critic.

CARLA CAR Learning to act.

CNNs Convolutional Neural Networks.

CQL Conservative Q-Learning.

DRL Deep Reinforcement Learning.

GPU Graphical Processing Unit.

LFD Learning from Demonstration.

LSTM Long Short-Term Memory.

MDP Markov Decision Process.

ML machine learning.

MMD Maximum Mean Discrepancy.

NNs Neural Networks.

OEMs original equipment manufacturers.

OOD Out-of-Distribution.

LIST OF FIGURES v

RL Reinforcement Learning.

RNNs Recurrent Neural Networks.

SAC Soft-Actor-Critic.

SQL Soft-Q-Learning.

TD Temporal Difference.

List of Figures

2.1 Autonomous Driving System Components 7

2.2 Deep Learning Methods . 9

2.3 Cycle Process of RL System . 10

2.4 MDP Dynamics . 11

2.5 Algorithm Classification . 15

2.6 On-Policy Learning in Contrast to Off-Policy Learning 15

2.7 Q-Table Learning and Deep Q Learning . 17

2.8 Soft-Q-Learning . 18

2.9 Actor-Critic Algorithm Classification . 20

2.10 Actor Network and Critic Network . 20

2.11 Actor-Critic Algorithm Dynamics . 21

2.12 Offline RL framework with and without further online fine-tuning 24

3.1 CarRacing-v0 environment example . 31

3.2 SAC (Pixel) on CarRacing-v0 . 33

3.3 Low and high reward dataset generated for the CQL algorithm evaluation . 34

3.4 Small CNN in LeNet style . 36

3.5 Carla enviornment example . 37

3.6 Carla Decoder Input . 37

3.7 Carla Reward Functions . 39

3.8 Carla Spawn Points . 39

3.9 SAC (Pixel) results in the Carla environment. 40

LIST OF FIGURES vi

3.10 Carla Dataset Overview . 41

4.1 Experimental Results Low Reward Dataset CarRacing-v0 43

4.2 Experimental Results High Reward Dataset CarRacing-v0 43

4.3 Experimental Results all Dataset Carla . 46

4.4 Performance Overview Carla new Metric with different α values 47

4.5 Performance Overview new Metric Datasets 49

LIST OF TABLES vii

List of Tables

1.1 Notation table . 5

3.1 Hyperparameter settings CarRacing-v0 SAC 32

3.2 Hyperparameter settings CarRacing-v0 CQL 35

1 INTRODUCTION 1

1 Introduction

1.1 Offline Reinforcement Learning in Autonomous Driving

Autonomously driving cars are considered to be the most disruptive technology of this
century [16], which will profoundly impact the economy, mobility, and society [7]. Nowa-
days, the first concepts of autonomous vehicle (AVs) can be found on the streets. Car
manufacturers already introduced autonomous driving level 3 or are on the transition to
introduce autonomous driving level 4 [69]. Market research estimates that from 2030 to
2050 consumers will begin to accept AVs in the broad mass market, and from 2050 to
2060, AVs will become the primary means of transportation [7] [40]. In the next 40 years,
there will be a fundamental change in the car market. The safety aspect of AVs is great
hope and, at the same time, a profound argument for the introduction of autonomous
vehicles. With the emergence of AVs on the road, the safety of road users will drastically
increase. According to [55], approximately 90-95 % of all car accidents are caused by hu-
man driving errors. The causes for driving errors are distracted driving, drunken driving,
or speeding. Autonomous driving is a promising solution to prevent these unnecessary
accidents since it will take away human control over the vehicle [40]. Furthermore, AVs
can provide more independent mobility for non-drivers or drivers who cannot safely par-
ticipate in road traffic [17]. Additionally, on an economic level, more and more business
models will emerge. In the future, vehicle unit sales will continue to grow, but with a
lower growth rate. New trends will emerge, and the current one is heading towards shared
mobility [13]. In all these concepts, the application of AVs is a vast business case. It is
expected that mobility services such as car sharing, carpooling, or shuttle services will
further increase their growth [61]. Moreover, existing business models like car insurance
or maintaining services have to adapt to the new situation. For autonomous technology
to be successful, it needs to overcome regulatory and ethical hurdles and the lack of stan-
dardized road infrastructure [11]. Key characteristics of an artificial intelligence system
for autonomous driving are the ability to process massive amounts of constantly changing
data, reason and draw inferences, learn based on historical patterns, and analyze and solve
complex problems [57]. In short, the essential ability of an autonomous car is to generate
a sequence of intelligent actions. As a part of machine learning, Reinforcement Learning
(RL) is about optimizing actions in different situations and, therefore, is theoretically
excellent for autonomous driving.

RL is a basic machine learning paradigm, where the agent learns to achieve a specific goal
in an uncertain environment. Through rewards and penalties for the performed actions,
the agent will be nudged into the desired behavior. The agent’s goal is the maximization
of its total reward. Increased computational power and further achievements in several

1 INTRODUCTION 2

areas of machine learning (ML) helped to accelerate the development of highly capable
RL algorithms. Recent applications show that agents can perform complex tasks such as
playing computer games on a human or even beyond human level [43], mastering coordina-
tion games, or simple tool usage [4]. Previous work from the latest years shows promising
applications of RL in the area of autonomous driving. It was possible to demonstrate
that RL agents can perform intelligent behavior in a highway setting and, in addition,
can handle intersection problems [25] [42]. Even though these successful approaches were
performed in a simulated environment and, therefore, not directly meaningful for a real-
world application, more and more real-world applications are emerging. In 2019, an agent
learned with only a few training episodes to follow a lane [29]. Moreover, only with a
few hours of training, RL models performed sharp turns, controlled stops, or obstacle
avoidance in the real world [17].

However, most RL methods learn in an active learning setting, which means an agent
performs an action, observes the outcome of the action in the form of a reward, and adapts
its behavior. This active interaction with the environment makes such RL methods hard
to transfer to a real-world problem, where active interactions can be expensive or even
unsafe [37]. For a practical application of RL into the real world, it is necessary to combine
RL with data-driven machine learning. The utilization of large and diverse data sets is
essential. In offline RL, data is collected once in advance and used to train an optimal
policy without further online data collection [37]. Since no further interaction with the
environment is needed, offline RL might be a solution to enable RL in autonomous driving.
An AV could be trained on millions of pictures and videos, representing actual driving
behavior and thereby learning to drive without being risky or unsafe [38]. Nevertheless,
there are still huge problems, such as distributional, which must be overcome.

This thesis aims to derive a sample efficient and safe policy from a static data set generated
from the CARLA simulator. The derived policy should be able to keep in lane. Further-
more, we will evaluate the effectiveness of the approach with respect to performance and
sample efficiency and compare the results with state-of-the-art baseline algorithms such
as Soft-Actor-Critic (SAC) and Behavior Cloning (BC).

1 INTRODUCTION 3

1.2 Outline

The main body of this work is separated into four different chapters. Each chapter will
focus on its particular subject.

2 Background and Related Work summarizes the basic techniques and related
approaches we will explore in this work. In particular, it will give a brief overview
of approaches to deep learning in autonomous driving and necessary system com-
ponents. After that, a summary of the foundations of reinforcement learning and
typical algorithms is given, followed by the main body of the work, offline reinforce-
ment learning. Next, advanced topics such as policy constraint methods or learning
lower-bounded policy-values methods will be addressed.

3 Approach discusses the problem faced by implementing online as well as offline
algorithms. Explicitly, we address the input representation, input space, reward-
function design, and network architecture. In addition, design choices will be ex-
pounded and justified.

4 Experiments are records of the experimental evaluation of the proposed approach.
We analyze whether conservative q-learning can empirically lead to comparable
good results or even succeed other approaches compared to state-of-the-art baseline
algorithms.

5 Conclusion summarizes the results of the proposed approach and discusses its
applicability as well as its limitations. Moreover, we will describe if offline reinforce-
ment learning might be a promising approach to enable autonomous driving.

1 INTRODUCTION 4

1.3 Notation

To the best of our abilities, we choose notations that follow the standard of related recent
literature. Temporal dependencies such as the time step along trajectories are generally
denoted with a subscript t. At times, next-step dependencies (i.e., t+1) may be replaced
by an apostrophe (e.g., s ') to reduce clutter. A summary of essential notations is given
in table 1.1

Symbol Meaning

a, at Action and action taken at time step t
αtemp Temperature factor SQL
αcon Conservatism factor CQL
αlearn Learning rate
A Action space (discrete or continuous) with a ∈

A
Aπ(s,a) Advantage function of state s and action a
b(s), b(s t) State-dependent baseline function and state-

dependent baseline function at time step t
D Set of transitions available for updating policy
DKL(p1||p2) Kullback–Leibler divergence between two prob-

ability distributions
D Policy constraints
d0 Initial state distribution d0(s0)
dπ(s) Overall state visitation frequency and state vis-

itation frequency at time step t
ε Random noise variable
EXvP Expected value of random variable X, sampled

from distribution P
f Placeholder for arbitrary functions
Gt Total discounted reward from time step t
γ Discounting factor for rewards
H Maximum rollout horizon
H(x) Entropy of the random variable x
J (π) Expected reward under trajectory distribution
J(θ) Loss function of network θ
M Tuple consisting of (S, A, T, d0, r, γ)
N (µ, σ2) Gaussian distribution parametrized by mean µ

and variance σ2

∇θ Gradient w.r.t. θ
o Observation

1 INTRODUCTION 5

O Observation space with o ∈ O
pπ(τ) Trajectory distribution
P(s '|s,a), P(st+1 |st ,at) State transition probability for arbitrary state-

action tuple and at particular time step
π, π(at |st) Stochastic distribution over actions conditioned

on states
π, π(at |ot) Stochastic distribution over actions conditioned

on observations
π∗ Optimal policy
πθ Policy π with network parameters θ
πβ Policy displayed in dataset
Qπ(s,a) State-action value function
Q∗π(s, a) Optimal state-action value function
r, rt Reward and reward at time step t
Rt Return at time step t
s, st State and state at time step t
S State space (discrete or continuous) with s ∈ S
T Conditional probability distribution of the form

T (st+1 |st ,at)
τ A trajectory of form (s0, a0,...,sH , aH)
θ, ψ, φ Parameter vector, e.g. might denote weights of

deep network
θ̄, θ̂, ψ̂, ψ̄, φ̂, φ̄ Target network parameters
V π(s) State value function
V ∗π (s) Optimal state value function

Table 1.1: Notation table

2 BACKROUND AND RELATED WORK 6

2 Backround and Related Work

The following chapter gives an overview of the frameworks, concepts, and methods relevant
to this work. Firstly, 2.1 gives a wrap-up about the current state-of-the-art deep learning
methods used for autonomous driving. After that, the fundamental framework of RL is set
out. Moreover, some basic algorithms of online RL will be introduced before addressing
more advanced methods of offline RL. At last, Behavioural Cloning will be presented and
its differentiation from RL. The introduced concepts are structured such that the derived
ideas and mathematical descriptions follow a continuous development.

2.1 Deep Learning in Autonomous Driving

As already mentioned in 1.1, up to 95% of all traffic accidents are caused by human
errors. To tackle rising fatal car accidents and meet the demand for advanced safety
features in cars [65], original equipment manufacturers (OEMs) started developing better
safety systems. As a result, we can distinguish between passive safety features such as
airbags or seat belts and active safety features like Anti-Lock Braking Systems (ABS) or
Adaptive Cruise Control (ACC). Active safety systems actively assist the driver to avoid
accidents and directly intervene with the driving task [39].

The current state-of-the-art technologies, like the mentioned ABS, enable automated driv-
ing. These systems enhance the driving behavior by dedicated control of autonomous
systems that support the driver while in control or enable to timely get back in control.
In contrast to automated driving, autonomous driving is the extreme end result of auto-
mated driving. In principle, no human driver is needed to operate the vehicle [48]. Today,
it is common to distinguish between five different levels of autonomous driving, from level
0 with no automation to level 5 with full automation [23].

Firstly, to create an autonomously acting car, it needs sensory impressions. In general, the
car observes the environment through its sensors (e.g., several cameras, LiDAR sensors,
or radar sensors) and thus creates its image of the environment. In the past, there has
been a long-running debate about which technology to use. Cameras are cost-efficient
but lack depth perception, cannot work in the dark and are sensitive to bad weather.
In contrast, LiDAR sensors have a higher resolution and deliver a precise perception
of the environment, but are very costly and are vulnerable to bad weather conditions
[5]. Different OEMs decided to follow different approaches in the number of sensors and
the usage of the available technology. Nevertheless, all OEMs are connected to the fact
that they have to create solutions in the respective disciplines Vision, Perception and
Planning as seen in 2.1 [53].

2 BACKROUND AND RELATED WORK 7

En
vi
ro
nm

en
t

Vision Perception Planning

Environmental
Model

And Vehicle
Pose

Target Actions/ Realtime
Operation

Ca
m
er
a

Ra
da
r

Li
DA

R

Data

Data

Data

Traffic Signal-
and Sign-
Detection

Road-, Lane-,
and Intersection

Detection

Object (Vehicle,
Pedestrian)
Detection

Data

Environmental
Perception

Localization

Mission
Planning

Behavioral
Planning

Motion Planning

Figure 2.1: A typical autonomous vehicle system overview with its three main components
"Vision", "Perception" and "Planning". This figure is based on [6].

Vision refers to the process of data collection and data processing. For a reliable au-
tonomous system, an understanding of the scene is necessary. The environment is scanned
with the help of several sensors to get as much information as possible. Modern sensor
architectures include cameras, radar, and LiDAR sensors. In particular, vision is respon-
sible for detecting all relevant objects by filtering the incoming camera images and LiDAR
or radar data.

Perception stands for the ability to extract information and knowledge from previous
condensed data. Environmental Perception refers to the process of forming an under-
standing of the environment, e.g., the location of objects or obstacles, driveable zones or
location of pedestrians. Localization stands for the ability to determine its own location
and to measure its motion within the environment. Here, an intermediate representation
of the environment is formed and later used for the decision process in planning [30].

Planning includes the decision process of the car fulfilling its task. In the context of AVs,
the transportation from one location to another location. Mission Planning refers to the
planning from the starting point to the destination point on a map level. Behavioral
Planning is responsible for making decisions along the route and ensuring that the ego
vehicle follows the road rules safely [48] [54]. Motion Planning describes the planning of
actions in a closed environment, such as overtaking maneuvers or lane changing.

The first time Machine Learning (ML) and Artificial Intelligence (AI) was acknowledged as
a central component of autonomous driving was the DARPA Grand Challenge in 2005 [51].

2 BACKROUND AND RELATED WORK 8

Here, the winner used ML techniques to navigate through the environment. With this
breakthrough, companies worldwide started to work on the introduction of deep learning
techniques in cars. For now, autonomous driving components, such as environmental
perception, localization, or mission planning, can either be designed with a deep learning
or non-learning approach. Currently, non-learning approaches are still predominantly.
One reason for the hesitation to integrate learning algorithms into the car is the lack of
trust in such techniques [59].

Despite the significant challenges and hurdles integrating deep learning into cars, it is
clear that sooner or later, these techniques will be applied in the real world. The most
common deep learning techniques are Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs) and Deep Reinforcement Learning (DRL).

CNNs are one of the most popular deep learning techniques so far. Its name is derived
from the mathematical operation between two layers of the network. CNNs show excellent
performance with the processing of images [2]. Tasks such as obstacle detection, scene
recognition, or lane recognition are suited for this deep learning architecture [47].

RNNs are excellent in understanding the time dynamics of an environment. RNNs
maintain and store relevant information from the past and create a dependency between
past states and current states [58]. A particular form of the RNN is the Long Short-
Term Memory (LSTM), which tries to learn long-term dependencies. For a vehicle to
understand the dynamics of a changing environment, it is crucial to take the past into
account, which makes RNNs or LSTMs very suitable [47].

DRL combines RL and deep learning. Since driving is, in principle, a decision-making
task, RL in combination with deep learning makes DRL qualified to enable autonomous
driving. Several papers showed the success of DRL with tasks such as lane-keeping, lane
changing or overtaking [31] [47].

In figure 2.2, the different deep learning methods are matched to the potential application
areas. Not all methods are equally suited for the application areas.

2 BACKROUND AND RELATED WORK 9

Figure 2.2: Deep Learning methods matched to the application ares in self-driving cars.
This figure is based on [47].

Overall, deep learning is becoming more and more prominent in the car market and is
a crucial element to enable autonomous driving. As described in this chapter, there
are many different design choices for the hardware and ML technique used. Furthermore,
there will not be a single deep learning technique that will solve the entire driving process.
It will be more of an interplay of different deep learning techniques.

2.2 Reinforcement Learning

Reinforcement Learning (RL) refers to various approaches, where an agent learns to
achieve a specific goal through interaction with its environment without any supervi-
sion. By trial and error and receiving rewards and penalties, the agent comes up with a
solution to a given problem. Human interaction is limited to the adaption of rewards and
penalties. A potential application of RL might be autonomous driving.

2.2.1 Markov Decision Process

Normally, a Markov Decision Process (MDP) is a framework used to describe an envi-
ronment for RL. MDPs are designated to frame the problem of learning from interaction
with the environment to achieve a goal. On a fundamental level, a MDP consists of
two entities, an agent and an environment. The agent interacts with the environment
by selecting actions, and the environment responds by presenting a new situation to the
agent and rewarding him. This interplay is illustrated in 2.3. The goal of the agent is the
maximization of the cumulated rewards.

The state, action, the following state, and reward at the discrete time step t ∈ {1,2,3,...}

2 BACKROUND AND RELATED WORK 10

Figure 2.3: The cyclic process of a RL system containing an agent and the environment
interacting with each other. This figure is based on [67].

are denoted as s t ∈ S, a t ∈ A, s t+1 ∈ S and r t : S × A × S → R, where S and A refer
to a discrete or continuous state-/action space. Usually, the reward function maps state
s t , action a t and successor state s t+1 to a real-valued reward. A fundamental property
of MDPs is the Markov Property, which states: "The future is independent of the past
given the present.". This means that successor state s t+1 and received reward r t only
depends on preceding state s t and preceding action a t and not on states or actions that
are further in the past. This allows the following compact representation of the state
transition probability function, which is a probability distribution over the next possible
successor states [67]:

P (st+1|st, at) = P (st+1|s1, ..., st, a1, ..., at). (2.1)

The transition function without actions is put into matrix form, where each row sums to
1 [8]. With discrete states, the transition function describes the probability to transition
from one state to another state.

P =

P11 ... P1n

...
...

Pn1 ... Pnn

A so-called policy is introduced to model the agent’s behavior, which is a mapping from
states to actions. Therefore, the policy π: S → A works as a state-dependent selection
function of choosing actions given a state in the form

π(a|s) = P (at = a|st = s), π : A× S → [0, 1]. (2.2)

Furthermore, together with the policy, it is now possible to describe the dynamics of a
MDP formally as follows: starting in initial state s0 and choosing a0 ∈ A according to
our policy. As a result, the state of the MDP transits from s0 to s1, drawn from P a0

s0s1
.

2 BACKROUND AND RELATED WORK 11

Then, from s1, another action a1 according to the learned policy is picked and again, a
transition to a successor state s2 is performed, drawn from P a1

s1s2
. The process continues

with this scheme and is illustrated as follows:

s0 s1

a1

s2

a0

𝜋 𝜋𝜋

ℙ(s1|s0, a0) ℙ(s2|s1, a1) ℙ(s3|s2, a2)

Figure 2.4: Schematic representation of the dynamics MDP

2.2.2 The Reinforcement Learning Goal

As already mentioned, the the agent’s goal is to choose better actions over time to max-
imize the expected value of the return. To define the return, the introduction of the
reward function R is needed, which depends on the current state st, the action at and the
successor state st+1 [49]:

rt = R(st, at, st+1). (2.3)

In the following, this might be simplified to just a dependence on the current state rt =

R(st) or state-action pair rt = R(st, at).

Now, the return Gt as the total discounted reward from time step t with discount factor
γ is defined as follows:

Gt = rt+1 + γrt+2 + ... =
∞∑
k=0

γkrt+k+1, γ ∈ [0, 1]. (2.4)

A sequence of consecutively states and actions yield in a trajectory τ of a specific finite
horizon length T . The rewards collected along the trajectory τ form R(τ). This can be
written in the following form:

τ = (s0, a0, s1, a1, s2, a2, ...) (2.5)

R(τ) =
T∑
t=0

rt (2.6)

or with infinite horizon:

2 BACKROUND AND RELATED WORK 12

R(τ) =
∞∑
t=0

γtrt. (2.7)

Most commonly, the discounted future rewards are interpreted as the current value of
the future rewards. The discount factor determines how much the agent cares about the
rewards far in the future relative to those in the immediate future. With γ = 0, the agent
will be "myopic" and only cares about actions that give an immediate reward. With γ =
1, the agent will be "far-sighted" and takes actions based on the sum of all future rewards
[50]. Reasons for the introduction of discount factor values are [3]:

• Avoids Gt =∞ when trajectory lengths is infinity

• Models human behavior, which shows a preference for immediate reward

• Models uncertainty about future rewards

The goal of RL is to learn a policy that maximizes the expected return along the tra-
jectory. With a stochastic environment transition function and policy, the probability of
a specific trajectory with horizon T is:

P (τ |π) = d0(s0)︸ ︷︷ ︸
initial
state

distribution

T−1∏
t=0

P (st+1|st, at)︸ ︷︷ ︸
transition prob.

to st

π(at|st)︸ ︷︷ ︸
prob. to

take action
at in st

(2.8)

and the expected return, denoted with J(π), is:

J(π) =

∫
τ

P (τ |π)R(τ) = E
τ∼π

[R(τ)]. (2.9)

The central optimization problem can be written as follows:

π∗ = arg max
π

J(π) (2.10)

with π∗ as the optimal policy.

2 BACKROUND AND RELATED WORK 13

2.2.3 Value Functions and Bellman Equations

Since the goal of RL is to derive an optimal policy, a measurement for optimality is needed.
A helpful way is to determine the value of a state or state-action pair. By value, we mean
the expected return of starting in a particular state or state-action pair and follow the
policy afterward. Therefore an optimal policy will lead to the highest return.

To express the value of a state, the On-Policy Value Function is used, which gives the
expected return when starting in s and following the policy afterward:

V π(s) = E
τ∼π

[R(τ)|s0 = s] = E
τ∼π

[
∞∑
t=0

γtrt|s0 = s

]
. (2.11)

In addition to this, it is possible to express the value of a state-action pair with the
On-Policy State-Action-Value Function also called Q-function, which gives the
expected return when starting in s and taking action a and following the policy afterwards:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] = r(s0, a0) + γ E
τ∼π

[R(τ)|s1 = s′] . (2.12)

By replacing the previous policy π with the optimal policy π∗ in 2.11 and 2.12, the
Optimal Value Function and the Optimal State-Action-Value Function can be
derived. This means that instead of following an arbitrary policy, an optimal policy is
used, which leads to the following equations:

V ∗(s) = max
π

E
τ∼π

[R(τ)|s0 = s] (2.13)

and

Q∗(s, a) = max
π

E
τ∼π

[R(τ)|s0 = s, a0 = a]. (2.14)

Since the computation of the state value function and the state-action value function can
be quite resource-intensive. The so-called Bellman Equation helps to break down the
functions into simpler, recursive sub-problems.

Now, it is possible to write the state value function in the following form:

2 BACKROUND AND RELATED WORK 14

V π(s) = E
τ∼π

[R(τ)|s0 = s]

= E
τ∼π

[
∞∑
t=0

γtrt|st = s

]

= E
τ∼π

[
rt + γ

∞∑
t=0

γt+1rt+1|st = s

]

=
∑
a

π(a|s)
∑
s′

P (s′|s, a)
∑
r

P (r|s, a, s′)

[
r + γ E

τ∼π

[
∞∑
t=0

γt+1rt+1|st+1 = s′

]]
=
∑
a

π(a|s)
∑
s′

P (s′|s, a)
∑
r

P (r|s, a, s′)[r + γVπ(s′)]

= E
a∼π(a|s)

s′∼P (s′|s,a)
r∼P (r|s,a)

[r + γVπ(s′)].

(2.15)

With similar procedure, the bellman equation for the state-action value function:

Qπ(st, at) = E
s′∼P (s′|s,a)
r∼P (r|s,a,s′)

[r + γ E
a′∼π

[Qπ(st+1, at+1)]]. (2.16)

Furthermore, since V ∗(s) is the maximum expected total reward when starting in state s,
it will be the maximum of Q∗(s, a) over all possible Q∗ value of other actions in the state
s. With this, the following connection can be established:

V ∗(s) = max
a
Q∗(s, a) ∀s ∈ S (2.17)

with the optimal policy:

π∗(s) = arg max
a
Q∗(s, a) ∀s ∈ S. (2.18)

2 BACKROUND AND RELATED WORK 15

2.3 Off-Policy Reinforcement Learning

On a high level, all RL algorithms can be mapped according to the following overview:

Figure 2.5: Differentiation of the various RL algorithms

In general, it can be differed between two types of policies [66]

1. Target Policy

2. Behavior Policy.

The so-called target policy is the policy the agent tries to learn, whereas the behavior
policy is the actual policy in use. Furthermore, it can be distinguished between the
learning processes On-Policy Learning and Off-Policy Learning.

Figure 2.6: Difference between On-Policy Learning and Off-Policy Learning

On-policy learning refers to the concept that the algorithm evaluates and improves the
same policy πk used for the action selection process as seen in Fig. 2.6. The is no difference
between the policy used for the action selection and the policy which will be improved. In

2 BACKROUND AND RELATED WORK 16

short, the behavior policy corresponds with the target policy. Known algorithm examples
are Policy Iteration, Value Iteration, or Sarsa.

On the other hand, there is off-policy learning which refers to approaches where the policy
for evaluation and improvement differs from the policy which is designated to take actions.
In short, target policy and behavior policy differ from one another. Here, transitions are
stored in a buffer used to learn πk+1 while πk still performs actions. After a specific
number of iterations, an update of πk with πk+1, derived from the buffer, is performed.

The advantage of off-policy methods might be a faster learning process since the knowledge
of several policies is stored in the replay buffer [66].

2.3.1 Q-Learning and DQN

Q-learning is a value-based off-policy RL algorithm that uses Temporal Difference Learn-
ing for the action-value function estimation. Temporal Difference (TD) learning describes
a method to estimate the optimal value-function V ∗(s) or action-value function Q(s, a).
The principle of TD learning is to perform rollouts by using the current policy π. Values
are determined by averaging the received returns starting in state s and taking action a.
TD methods do not perform a whole episode to approximate the value. Instead, they
bootstrap the update by building up on an existing estimation. The TD(0) method is
given by:

Vπ(st)← Vπ(st) + αlearn[rt+1 + γVπ(st+1)− Vπ(st)] (2.19)

with α as update step-size.

The formula for iterative estimating the Q-values Q(st, at) is the following [28]:

Qnew(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ αlearn︸ ︷︷ ︸
learning rate

·[
Temporal Difference Error︷ ︸︸ ︷

rt︸︷︷︸
reward

+ γ︸︷︷︸
discount
factor

·max
a
Q(st+1, a)︸ ︷︷ ︸

estimate of optimal
future value︸ ︷︷ ︸

new value (temporal difference target)

−Q(st.at)︸ ︷︷ ︸
old value

] (2.20)

There are many ways to choose action a for exploration in Q-Learning, but the most
common one is the ε-greedy strategy:

action at =

arg maxQt(a), with prob. 1− ε

any action a, with prob. ε
(2.21)

2 BACKROUND AND RELATED WORK 17

In this strategy, the action a is selected greedily with probability 1 − ε, ε ∈ (0, 1). In
general, a little randomness is desired to promote exploration of the state space.

Q-Table
State-
Action Value

- 0

- 0

- 0

- 0

- 0

- 0

State

Action

Q-
Value

Q Learning

State

Deep Q Learning

Q-Value
a1

Q-Value
a2

Q-Value
a…

Q-Value
aN

Figure 2.7: Q learning compared to Deep Q Learning

For large state and action spaces such as images or continuous action spaces, the normal
Q-Learning quickly reaches its limits. Estimating Q-values with a tabular approach such
as Q-tables is infeasible. For the first time, Mnih et al. [43] introduced Neural Networks
(NNs) to approximate the action-value function as a Q-network. In the paper, a discrete
action state was used. The network with the weights θ approximated all Q-values for
every different action, as seen in 2.7 on the right.

During the training phase of the Q-network, the following loss function is iteratively
minimized:

J(θ) = [(r + γmax
at+1

Q(st+1, at+1; θtarget)︸ ︷︷ ︸
Target Q Value

−Q(st, at; θ
pred)]2︸ ︷︷ ︸

Predicted Q Value

. (2.22)

Hereby, the loss function optimization is done with stochastic gradient descent (SGD).
The gradient of the loss function can be derived as follows:

∇θJ(θ) = [(r + γmaxQ(st+1, at+1; θi−1))−Q(st, at; θi)∇θQ(st, at; θi)]. (2.23)

Furthermore, the DQN algorithms utilize experience replay by storing transitions et =

(st, at, rt, st+1) in replay buffer D = e1, ..., eN . Thereby, a more stable data set is created
and, through the random samples, the data is closer to independent and identically dis-
tributed [24]. By sampling mini-batches from the replay buffer, the Q-values are updated.

2 BACKROUND AND RELATED WORK 18

2.3.2 Soft-Q-Learning (SQL)

For the introduction of Soft-Q-Learning (SQL), some intuition is needed before. Generally,
in RL, there is a fundamental trade-off between exploration and exploitation. Through
exploration, it is possible to escape local optimums and find better solutions. However,
too much exploration will not lead to optimal behavior in an appropriate amount of time
[10]. This means, agents have to decide between the urge to acquire new knowledge
of the environment through exploration and the urge to maximize their reward through
exploiting the already gathered knowledge about the environment.

In RL, to measure the randomness of actions of an agent, the entropy of a probability
distribution is used. Entropy directly relates to the unpredictability of actions and the
greater the entropy, the more random actions are taken by the agent. Often and desired,
the learning process in RL leads to a decreasing entropy of the action selection due to the
convergence to optimal behavior, which has less random behavior [26]. Therefore, entropy
can be a tool used to prevent a too fast convergence of a policy by promoting random
actions to enhance the awareness of alternatives [68].

A helpful illustration is the following:

Figure 2.8: Illustration of taking the exponential of the Q-function (on the right) instead
of the maximum of the Q-function (on the left). This figure is based on [68].

Again, by taking equation 2.22 into account, in DQN, the maximum of the Q-function
is chosen: see 2.8 on the right. A disadvantage of this strategy is the inflexibility of the
learned policy in altered environmental situations. A helpful picture is to imagine an
agent in a maze with two alternative paths to a goal represented by the grey curve in 2.8.
The maximization of the Q-function leads to an ignoring of the alternative path. Whereas
a formalization of the policy as an exponential of the Q-function (2.8 on the right) helps
the policy to consider other paths [68]:

2 BACKROUND AND RELATED WORK 19

π(a|s) ∝ exp Q(s, a) (2.24)

The maximum-entropy form of the RL objective in formula 2.10 is:

π∗MaxEnt = arg max
π

Eπ

[
T∑
t=0

rt +H(π(·|st))

]
. (2.25)

The idea behind the entropy formulation of the RL objective is to construct algorithms,
where the algorithms learn to receive the highest sum of reward and entropy. Using
entropy forces the agent to search for a distribution with maximum entropy, enabling
exploration and preventing convergence against local maxima. Therefore, we tackle the
exploration-/exploitation-problem with an entropy regularization with an adaptive pa-
rameter αtemp, called temperature, [41] and come to the slightly different formulation:

π∗MaxEnt = arg max
π

Eπ

[
T∑
t=0

rt + αtempH(π(·|st))

]
. (2.26)

The temperature parameter is needed to promote exploration. With large αtemp encour-
aging exploration and small αtemp reducing exploration. If α = 0, the old RL objective of
2.10 is received. Now, in the entropy-regularized framework, we need a slight redefinition
of the Q-function to [22]:

Q∗soft(st, at) = rt + E(st+1,...)∼π

[
∞∑
l=1

γl(rt+l + αtempH(π∗MaxEnt(·|st+l)))

]
. (2.27)

Whereas the soft value function is given by:

V ∗soft(st) = αtemp log
∫
A
exp (

1

αtemp
Q∗soft(st, a

′))da′. (2.28)

Furthermore, we train the Q-function with the minimization of the soft Bellman residual:

JQ(θ) = Est,at∼π
[

1

2
(Q̂θ̄

soft(st, at)−Qθ
soft(st, at)

2

]
. (2.29)

Hereby, Q̂θ̄
soft(st, at) = rt + γEst+1∼π[V θ̄

soft(st+1)] is the target Q-value with θ̄ as the target
parameters.

Advantages of SQL compared to Q-learning is better exploration, policy transfer between
similar tasks and a better robustness in terms of adaption to changed environmental
situations [28] [68].

2 BACKROUND AND RELATED WORK 20

2.3.3 Soft-Actor-Critic Algorithm (SAC)

First of all, Actor-Critic (AC) algorithms must be introduced before explaining the SAC
algorithm. As well as SQL, AC algorithms can handle continuous action-space and con-
tinuous state-space.

Figure 2.9: The connection between the two policy optimization approaches: Value-based
optimization and policy-based optimization. The hybrid between those two approaches
are actor-critic approaches. This figure is based on [14].

In general, AC algorithms work with two different structures. The first structure repre-
sents the actor, which is responsible for the action selection. The second structure, called
critic, is in charge of evaluating the actions taken by the actor [63]. The actor takes the
state from the environment as input and delivers the current best action according to
its current knowledge as output. The goal of the actor is to learn an optimal policy π.
Whereas the critic approximates the value function to evaluate the actions taken by the
actor [27]. This behavior is displayed in the following figure:

Figure 2.10: Two network design with the actor network (on the right) and critic network
(on the left) [37].

The general structure of every actor-critic algorithm can be seen in the following illus-
tration, which shows the loop between the actor-critic structure of figure 2.10 and the
environment.

The SAC algorithm uses neural network function approximators for Vψ(st), Qθ(st, at) and

2 BACKROUND AND RELATED WORK 21

Figure 2.11: The general interaction between the actor-critic structure and the environ-
ment with the policy as actor and the value function as critic. The critic evaluates the
environment feedback in form of reward rt with a TD error. The figure is based on [67].

the policy πφ(at|st) with the respective network parameters ψ, θ and φ. The state-value
function Vψ(st) is trained through the minimization of the squared residual error:

JV (ψ) = Est∼D
[

1

2
(Vψ(st)− Eat∼πφ [Qθ(st, at)− log πφ(at|st)])2

]
. (2.30)

The states are sampled from replay buffer D. The gradient of equation 2.30 can be
approximated by:

∇̂ψJV (ψ) = ∇ψVψ(st)(Vψ(st)−Qθ(st, at) + log πφ(at|st)), (2.31)

with the actions sampled from the current policy. By minimizing the soft Bellman residual,
it is possible to train the soft Q-function:

JQ(θ) = E(st,at)∼D

[
1

2
(Qθ(st, at)− Q̂θ(st, at))

2

]
, (2.32)

with the target network Q̂θ(st, at)) as:

Q̂θ(st, at)) = r(st, at) + γEst+1∼π[Vψ̄(st+1)]. (2.33)

2 BACKROUND AND RELATED WORK 22

and the target parameters of the value function as ψ̄ .The stochastic gradient of the loss
function JQ(θ) is given by:

∇̂JQ(θ) = ∇θQθ(st, at)(Qθ(st, at)− r(st, at)− γVψ̄(st+1)). (2.34)

The parameters of the target network ψ̄ are an moving average of the value parameters
ψ. Furthermore, the policy is learned through the minimization of the KL-divergence:

Jπ(φ) = Est∼D
[
DKL

(
πφ(·|st)

∣∣∣∣∣∣∣∣exp (Qφ(st, ·)
Zφ(st)

)]
. (2.35)

Since the function Zφ(st) does not show up in the gradient, it can be ignored. For the
optimization of Jπ(φ), the policy is reparametrized such that samples are drawn with:

at = fφ(εt, st), (2.36)

with fφ(εt, st) as a function of state st, independent noise ε and policy parameters φ.
Because of the reparametrizatuin, equation 2.35 can be written as follows:

Jπ(φ) = Eεt∼N
st∼D

[log πφ(fφ(εt, st)|st)−Qφ(st, fφ(εt, st))], (2.37)

and the gradient of the loss function Jπ(φ) as:

∇̂φJπ(φ) = ∇φlog πφ(at|st) + (∇at log πφ(at|st)−∇atQ(st, at))∇φfφ(εt, st). (2.38)

Hereby, at is evaluated by fφ(εt, st) and ε is sampled from a fixed distribution. Fur-
thermore, the SAC algorithm trains two Q-functions independently and then uses the
minimum of the Q-functions in the following way:

Jπ(φ) = Eεt∼N
st∼D

[
log πφ(fφ(εt, st)|st)− min

j=1,2
Qφ(st, fφ(εt, st))

]
. (2.39)

Samples are collected from the environment and the gradients are calculated from the
replay buffer what makes SAC an off-policy algorithm.

2 BACKROUND AND RELATED WORK 23

2.4 Offline Reinforcement Learning

The algorithms of the previous sections are all online RL algorithms. In their respective
framework, they either update their policy after every step or update the policy with
trajectories from a buffer [67]. So far, the significant disadvantage is that we can not
apply RL in a wide variety of fields where online interaction might be harmful [38]. In the
context of autonomous driving, online learning means the car is learning during the actual
driving process on the street, which is error-prone and risky. An alternative to the training
in real life is the usage of high-fidelity simulators. Unfortunately, these are challenging to
build. Furthermore, the transition from a simulator to real life is not apparent since good
performance in the simulators does not imply good performance in the real world [52].
Nevertheless, Osinski et al. [52] and Capasso et. al. [12] were able to show a fundamental
transfer of driving maneuvers from simulation to real-world.

Another promising application area for offline RL despite autonomous driving exists in
health care. Since we can interpret the treatment in health scenarios as a sequence of
decision-making, it makes the RL framework, as long term decision-making optimizer,
suitable for treatment recommendations. Moreover, as in autonomous driving, the real-
world application must be considered very carefully because human life is involved. In
addition, the selection of the underlying data must be taken very carefully since artifacts
might lead to harmful decisions. An illustrating example is that from a more aggressive
treatment of sicker patients, which comes along with higher mortality, the agent could
conclude the inappropriateness of the treatment even though the mortality comes from
the illness and not from the treatment [21]. Furthermore, modeling the reward function
and action space is also very error-prone and needs a careful evaluation.

Much of the success of machine learning is based on the use of large amounts of data. So
far, in online RL, the advantages of large amounts of data are not used. In the case of
off-policy algorithms, data is utilized in the sense of replay buffers but is not comparable
with the usage of big data sets like in supervised learning. The goal is to transfer this data-
driven learning methods into RL, which results in offline RL [38]. Firstly, this might help
improve RL’s performance, and secondly, this solves the problem with the risky online
interaction since the agent learns from the given data. Several frameworks emerged, e.g.,
in pure offline RL, data is collected once in advance with any given policy, and based on
the collected data, a policy is derived which will be deployed in the environment (2.12
left). Another variation is the usage of offline RL as a basis to derive a policy that will
be fine-tuned afterward online (2.12 right) [46].

2 BACKROUND AND RELATED WORK 24

𝜋!

s, r

a 𝜋
learn

buffer 𝒟

{(si, ai, s‘i, ri)}

s, r

a

𝜋

training deployment

𝜋!

s, r

a 𝜋
learn

buffer 𝒟

{(si, ai, s‘i, ri)}

s, r

a

𝜋!

training fine tuning

𝜋!"#

{(si, ai, s‘i, ri)}

𝜋!"#

update

Figure 2.12: Frameworks Offline RL [38] [46]. On the left, pure offline learning with direct
deployment in the environment. On the right, offline learning with further online learning
afterwards.

2.4.0.1 Fundamental sources of errors in offline RL In general, the offline data
can be delivered by any kind of source and be very diverse. However, the learned policy
can only display behavior that is also represented in the underlying data. This correlation
stresses the importance of data selection.

Furthermore, another fundamental problem of offline RL is the distributional shift. Dis-
tributional shift generally describes the phenomena that the behavior policy, the policy
collecting the data (in 2.12 policy πβ), differs from the policy derived from the data (in
2.12 policy π). The reason for this difference is that common off-policy algorithms are
prone to overestimate unseen states and end up in a loop of constant overestimation.
State-of-the-art off-policy algorithms such as SAC were tested on datasets. By having a
look at the Q-values, the performance of SAC on an expert dataset seemed incredible since
they have grown very quickly. In reality, the algorithm performed badly [32] and only
thinks it performs well. In Q-learning, Q-values are updated by choosing the maximum
over the actions max

a′
Q(s′, a′). If the maximum is represented by an out-of-distribution

action, the Q-value is updated with this never-seen action. This behavior starts a cas-
cade of constantly increasing overestimations. In classical online learning, there might
also occur the effect of overestimation, but with exploration and the actual visitation of
the state-action pair, the algorithms corrects its overestimation. Whereas in the offline
setting, there is no possibility to correct the overestimation through exploration since the
data does not represent the overestimated state-action pair and online interaction is not
possible. So far, several approaches have been developed to tackle the problem of distri-
butional shift, under them policy constraint methods, conservative model-based methods
or lower-bounded policy-value methods [37].

2 BACKROUND AND RELATED WORK 25

2.4.1 Policy Constraint Methods

One way to address the problem of the distribution shift is to add some form of pessimism
to our policy so that Out-of-Distribution (OOD) actions are not taken anymore [37]. This
means that the target value π(at+1|st+1) is forced to be close to the behavior distribution,
the one that collected the data πβ(at+1|st+1). This pessimism prevents the overestimation
cascade since all states and actions for the Q-function are in-distribution.

In general, there exist several ways to implement such constraint, e.g., support matching
[34], distribution matching [19], state-marginal constraints [45] or implicit/closed-form
distribution constraints [46]. The different types of constraints often lead to an implicitly
different type of algorithms approaching the solution differently. The goal is to choose a
constraint, which is least restrictive [37]. Empirically, the success of the policy constraint
method heavily depends on the tunability of the method.

Generally, we can formalize such an approach by imposing a constraint on the policy:

πφ := arg max
φ

Ea′∼πφ(a|s)[Q(s, a)] s.t. D(πφ(a|s), πβ(a|s)) ≤ ε (2.40)

with β given as the distribution displayed in the dataset.

The constraints alters the optimal solutions in the following way:

max
π

Eπ

[∑
t

γtr(st, at)

]
− αD(π(a|s), πβ(a|s)) (2.41)

Examples for the constraint modeling can look like follows:

• D(πφ, πβ) = MMD((πφ, πβ)

• D(πφ, πβ) = DKL((πφ, πβ)

• D(πφ, πβ) = D(dπφ(s, a), dπβ(s, a))

2 BACKROUND AND RELATED WORK 26

2.4.1.1 Bootstrapping Error Accumulation Reduction (BEAR) According to
Kumar et al. [34], the weakness of current off-policy algorithms applied to offline datasets
stems from the bootstrapping of OOD actions. This bootstrapping error accumulates
over time. The Bootstrapping Error Accumulation Reduction (BEAR) algorithm was
developed to address this problem, which is, in general, a policy constraint method. On
a high level, BEAR constrains the learned policy to place the "non-zero probability mass
on actions with non-negligible behavior policy density"[32] and is, therefore, a support
matching constraint method. The advantage of BEAR is the robustness when facing a
data set not generated by an expert but from a suboptimal policy.

The BEAR algorithm is built on top of the classical SAC algorithm as introduced in 2.3.3
but additionally a static dataset of transitions D = {s, a, s′, R(s, a))} which is collected by
the unknown policy β(·|s) is given. Hereby, the state-action distribution of β is denoted
as µ(s, a). For the improvement of our policy, two components are used. Firstly, K
Q-functions and their respective minimum Q-values and secondly, a constraint, which
ensures that the set of policies

∏
ε shares the same support as the behavior policy µ.

The policy is updated with the maximum over the pessimistic Q-values with the set of
Q-functions Q̂1, ..., Q̂K :

πφ(s) = max
π∈

∏
ε

Ea∼π(·|s)

[
min

j=1,...,K
Q̂j(s, a)

]
(2.42)

To enforce the satisfaction of the support constraint, the sampled Maximum Mean Dis-
crepancy (MMD) between actions is used to measure the support divergence. With MMD,
the discrepancy can be estimated solely with samples from both distributions, β and ac-
tor π. The MMD between P and Q given with the samples (x1, ..., xn) ∼ P as well as
(y1, ..., ym) ∼ Q and universal kernel k(·, ·) can be written in the following way:

MMD2({x1, ..., xn}, {y1, ...ym}) =
1

n2

∑
i,i′

k(xi, xi′)−
2

nm

∑
i,j

k(xi, yi) +
1

m2

∑
j,j′

k(yj, yj′)

(2.43)

Putting together 2.42 and 2.43 into 2.40,the following constrained policy improvement
step is created:

πφ := max
π∈δ|S|

Es∼DEa∼π(·|s)

[
min

j=1,...,K
Q̂j(s, a)

]
s.t. Es∼D[MMD(D(s), π(·|s))] ≤ ε. (2.44)

In [34], a threshold of ε = 0.05 has been established. In summary, the actor maximizes
the Q-function, while the Q-function performs a constrained Q-learning over a reduced
set of policies.

2 BACKROUND AND RELATED WORK 27

By comparing BEAR to several state-of-the-art baseline algorithms such as BC, BCQ
or DQfD with different datasets generated by different policies (from random low-return
policy to expert high-return policy), [32] showed an outperformance of every algorithm
by BEAR. Furthermore, the BEAR algorithm was able to perform better than the expert
high-return policy.

2.4.1.2 Behavioural Regularized Actor Critic (BRAC) Like BEAR, the Be-
havioural Regularized Actor Critic (BRAC) framework has the goal to regularize a learned
policy but tries to generalize the existing approaches such as BEAR or BCQ further [70].
Similar as in SAC, a term is added to the target Q-value calculation, which will push the
learned policy π towards the behavior policy πβ (value penalty). Therefore, the penaliza-
tion of the value function looks like following:

V π
D(s) =

∞∑
t=0

γtEst∼Pπt (s)[R
π(st)− αD(π(·|st), πβ(·|st))] (2.45)

with D measuring the divergence between the actions of policy π and πβ. Common
divergence functions are MMD oder KL.

The Q-value objective together with the sample-based estimated penalization D̂ and Q̄

as target Q-function is given by:

min
Qψ

E(s,a,r,s′)∼D
a′∼πθ(·|s′)

[
r + γ(Q̄(s′, a′)− αD̂(πθ(·|s′), πβ(·|s′)))−Qψ(s, a))2

]
. (2.46)

Furthermore, the objective is a slight variation of 2.41 and can be written as,

max
πθ

E(s,a,r,s′)∼D

[
Ea′′∼πθ(·|s)[Qψ(s, a′′)]− αD̂(πθ(·|s), πβ(·|s))

]
. (2.47)

Another form of regularization is to constrain the policy only during its optimization with
α = 0 in 2.46 during the Q-update and with α 6= 0 in 2.47 during policy update. This
variation is called policy regularization.

In addition, another design decision to consider is the choice of D. With BEAR the
Kernel MMD was already introduced, but additional options are KL Divergence or the
Wasserstein Distance.

In [70], the same evaluation as in [34] was performed with different datasets generated
by different policies with a simpler form of BEAR derived from the BRAC framework.
It was shown that value penalty performs slightly better than policy regularization. In
the case of the divergence choice, no advantage or disadvantage for any regularizer was
shown, but a sensitivity towards hyperparameters was observable.

2 BACKROUND AND RELATED WORK 28

2.4.2 Lower-Bounded Policy-Values Methods

A different approach to tackle the problem of distributional shift is to use lower-bounded
policy-value methods, where the expected value of a policy is a lower-bound of the true
value. Since the Q-values are overestimated due to bootstrapping OOD actions, learning a
conservative estimation of the value function, which lower-bounds the true value addresses
this issue [35]. The main idea is to minimize Q-values of unseen actions and afterwards
tighten the bound by maximizing Q-values of actions included in the data distribution.

2.4.2.1 Conservative Q-Learning (CQL) The algorithmic framework of Conser-
vative Q-Learning (CQL) aims to learn conservative, lower-bound estimations of the value
function by constraining the Q-values during the training phase and therefore prevents
overestimating OOD actions. The theoretical analysis in [35] shows that only the expected
value of the Q-function lower-bounds the true policy value. The conservative off-policy
evaluation is addressed through minimization of the expected Q-value under the state-
action distribution µ(s, a) with the restriction to match the state-marginal in D with
µ(s, a) = dπβ(s)µ(a|s). The reason for this restriction is that during Q-function train-
ing the function queries unseen actions, not unseen states. The iterative update for the
Q-function training with trade-off factor α can be given like follows:

Q̂k+1 ← arg min
Q

αcon · (Est∼D,at∼µ(at|st)[Q(st, at)]− Eat∼D,at∼p̂iβ(at|st)[Q(st, at)])+

1

2
Es,a,s′∼D

[
(Q(st, at)− B̂πQ̂k(st, at))

2
]
. (2.48)

In addition, Kumar et. al. [35] proves when µ(a|s) = π(a|s) that Eπ(a|s)[Q̂
π(s, a)] ≤ V π(s)

must be true.

To come to the CQL framework, small modification of 2.48 with regularizerR(µ) is needed:

min
Q

max
µ

αcon(Eat∼D,at∼µ(at|st)[Q(st, at)]− Eat∼D,at∼π̂β(at|st)[Q(st|at)])

+
1

2
Es,a,s′∼D

[
(Q(st, at)− B̂πkQ̂k(st, at))

2
]

+R(µ). (2.49)

and come to CQL(R). A simplified version of 2.49 [33] is :

2 BACKROUND AND RELATED WORK 29

Q̂π
CQL ← arg min

Q
max
µ(at|st)

CQL regularizer︷ ︸︸ ︷
(Est∼D,at∼µ(at|st)[Q(st, at)]− Est,at∼D[Q(st, at)])

+
1

2αcon
Es,a,s′∼D

[
(r(st, at) + γEπ[Q̄(st+1, at+1)]−Q(st, at))

2
]︸ ︷︷ ︸

TD error

. (2.50)

The regularizer minimizes the Q-values on unseen actions with overestimated values, while
at the same time maximizes the expected Q-values on the dataset. The regularizer can
e.g. be the KL-divergence and is a variation of 2.49:

min
Q

αcon Est∼D

[
log

∑
at

exp(Q(st, at))− Eat∼π̂β(at|st)[Q(st, at)]

]

+
1

2
Es,a,s′∼D

[
(Q− B̂πkQ̂k)2

]
(2.51)

The pseudocode to CQL can be given in the following way:

Algorithm 1: CQL [35]

Initialize Q-function, Qθ and policy πφ (if using actor-critic method);
for step t in {1,...,N} do

Train Q-function using GQ gradient steps on objective from 2.51;
θt = θt−1 − ηQ∇θCQL(R)(θ);
(B∗ for Q-learning, Bπφt for actor-critic);
(only with actor-critic);
Improve policy πφ via Gπ gradient steps on φ with SAC entropy regularization;
φt := φt−1 + ηπEs∼D,a∼πφ(·|s)[Qθ(s, a)− log πφ(a|s)]

end

Empirically, CQL outperforms other offline RL methods such as BEAR or BRAC vari-
ations by the factor 2-5x and is the only method to perform better than behavioural
cloning due stitching. Stitching describes the process of stitching together different sub-
trajectories of a dataset. As an example, CQL can in theory solve a maze by stitching
together several sub-trajectories, which show in combination the correct way, even though
the solution way through the maze is not directly displayed in the dataset.

2 BACKROUND AND RELATED WORK 30

2.5 Behavior Cloning (BC)

A different approach to train an agent is behavioral cloning. Instead of learning from
rewards and punishment from the environment, the agent imitates the behavior from an
expert (typically a human). This form of learning is called Learning from Demonstration
(LFD) [30]. In behavior cloning, a dataset with actions and observations is generated
and, afterward, a model is trained with supervised learning [37].

One of the very first applications of imitation learning was Autonomous Land Vehicle in A
Neural Network (ALVINN) [56]. The car was able to drive up to 90 miles without human
interruption but suffered from one fundamental problem. Due to a normal randomness in
the system, the car will sooner or later end up in a state it never was before and will not
know which action to take. For the car, it is very hard to recover from this since no data
shows a recovery trajectory. In addition, it is hard to provide high quality data sets with a
diverse demonstration of actions and states [30]. An improvement in autonomous driving
was the adaption to use three cameras [9]. One front camera, one to the left and one to
the right. Through the augmentation of the three images the model can understand the
environment better and learn from its mistakes.

Since this adaptation was still unable to recover from errors, the DAgger algorithm was
developed to solve this problem. The DAgger method helps the agent to recover from
unseen states by adding new measurements to the dataset. On the other hand, the
DAgger algorithm has the disadvantage of labeling the actions to observation by hand,
which makes the algorithm impractical for large data sets [20].

A quite successful application of BC was shown in [62]. Here, they used data generated
from experts playing the Go game to initialize the policy network. Nevertheless, LfD was
not enough to achieve a super human performance since no intelligence is incorporated.
Additionally, they used search tree techniques and another value network. LfD was only
the basis for further improvement.

3 APPROACH 31

3 Approach

The following section introduces the Gym CarRacing-v0 environment and the CARLA
driving simulator. Furthermore, the dataset creation, the different SAC hyperparameters
and CQL hyperparameters are outlined. In addition, the pre-processing, the reward
function design and the CNN architecture is described.

3.1 CarRacing-v0

The CarRacing-v0 environment is an OpenAI Gym environment. A small formula 1 car
drives on a racetrack and the goal is to cover as much of the racetrack as possible.

3.1.1 Environment

Figure 3.1: Graphic shows example image of
the CarRacing-v0 environment

The observation space of the environment
consists of 96x96 RGB images. CarRacing-
v0 is a continuous control task environment
with a top-down view. The action space
is defined as follows: steering wheel angle
∈ [−1, 1], gas ∈ [0, 1] and brake ∈ [0, 1].
The reward of the environment is defined
as - 0.1 for every frame and +1000

N
for every

track tile visited in the episode with N as
the total number of track tiles. The episode
is finished when all tiles are visited or, the
car drove off the map. At the bottom of
the image, the following information is dis-
played: the actual speed, four ABS sensors, the steering wheel position and, a gyroscope.

3.1.2 CarRacing-v0 SAC

Pre-Processing Before training SAC on the CarRacing-v0 environment, some pre-
processing was necessary. Firstly, the black bar at the bottom of the image was cut off
to prevent a learning from the displayed information. Secondly, the RGB image was
normalized and turned into a grayscale image to speed up the learning process.

SAC Algorithm For the SAC algorithm, the implementation of Laskin et al. [36] was
used. The hyperparameters for the final model can be seen in the following table:

3 APPROACH 32

Hyperparameters SAC (Pixel)
General

Observation size 96
Frame stack 4
Action repeat 2

Encoder
Number of layers 4
Number of filters 32
Latent dimensions 128
Encoder learning rate 1× 10−3

Encoder tau 0.05
Agent Learning

Train steps 1× 106

Replay buffer size 5× 104

Batch size 256
Discount factor γ 0.99
Critic learning rate 1× 10−3

Critic optimizer beta 0.9
Critic target update frequency 2
Critic tau 0.1
Target interpolation factor 0.005
Min log SD -10
Max log SD 2
Actor learning rate 1× 10−3

Actor optimizer beta 0.9
Actor update frequency 2
Learnable temperature True
Initial temperature 0.1
Alpha learning rate 1× 10−4

Alpha optimizer beta 0.5

Table 3.1: Hyperparameter settings for the SAC algorithm during the CarRacing-v0 train-
ing. The first column contains the hyperparameter name and the second column the
respective value.

The two hyperparameters frame stack and action repeat in table 3.1 refer to techniques
that help stabilizing the training process.

Frame stack Frame stacking is a technique that helps the model to understand the

3 APPROACH 33

dynamics of an environment. By stacking every k frames together, it is easier for the
agent to understand temporal information such as velocity or speed. In addition, the
agent can more easily understand the consequences of its actions.

Action repeat Action repeat refers to a technique that let the model repeat an action
k times before selecting a new one. In the case of autonomous driving in RL, it helps the
car to prevent swerving and stabilizes the training. Instead of choosing every state a new
action, it repeats the action for several states.

3.1.3 Dataset generation

To test the CQL algorithm on CarRacing-v0, it is necessary to generate a dataset before-
hand. Therefore, a SAC agent was fully trained until it was able to solve the environment.
The environment is considered to be solved with a constant reward level above 800. With
the generated model, a dataset was created. The following illustration shows the results
of several SAC trainings with the hyperparameters of table 3.1. With this hyperparame-
ters, it was possible to achieve a stable and good learning performance. Every time, the
agent reached expert level. Furthermore, SAC was very efficient and reached the desired
reward-level very fast.

Figure 3.2: SAC (Pixel) results in the CarRacing-v0 environment steadily achieving a
reward around 850

During the training, every 1000 steps, the current model was saved. To test the CQL

3 APPROACH 34

algorithm, we decided to evaluate the performance on two different datasets. A high
reward dataset and a low reward dataset. Therefore, from the saved models, we chose
one, which achieved on average a reward of 851, and one, which achieved on average a
reward of 426. With the two selected models, we created the datasets. Each dataset
consisted of 50k transitions.

Figure 3.3: Low and high reward dataset generated for the CQL algorithm evaluation

3.1.4 CQL Approach

For CQL, we used the implementation of Seno et al. [60]. The network optimization is
done in the following way:

L(θi) = αconEst∼D

[
log

∑
at

expQθi(st, at)− Eat∼D[Qθi(st, at)]− τ

]
+ LSAC(θi) (3.1)

with the computation of log
∑
a

expQθi(st, a) as follows:

log
∑
a

expQθi(st, at) ≈ log

 1

2N

N∑
ai∼Unif(a)

[
expQ(st, ai)

Unif(a)

]
+

1

2N

N∑
ai∼πφ(at|st)

[
expQ(st, ai)

πφ(ai|st)

]
(3.2)

where N is the number of sampled actions.

Furthermore, it was possible to adjust the α parameter automatically via a Lagrangian
dual gradient. If the Q-value is smaller than the threshold τ , the α value becomes smaller.
Otherwise, if the Q-values become larger than the threshold, the α value gets increased
to penalize large Q-values. Therefore, we decided to test constant and learning alpha
values on the two datasets. Hereby, we focused on the variation of the alpha values. We

3 APPROACH 35

expected that high α values should perform better on the high reward dataset and worse
on the low reward dataset. Higher α values imply higher conservatism which means the
agent should stay closer to the action distribution shown in the dataset. Lower α values
imply lower conservatism and, therefore, should perform better on the low reward dataset.
In this environment, we tested the following values: α ∈ [0.001, 0.01, 1, 5, 10, 20, 40]. In
addition, we compared the CQL results with behavior cloning.

In the following table, the hyperparameters for the CQL algorithm in the CarRacing
environment can be seen. The reason we did not use frame stacking is that the dataset
already contained stacked images.

Hyperparameters CQL (Pixel)
General

Observation size 96
Frame stack 0

Agent Learning
Train steps 1× 106

Batch size 256
Discount factor γ 0.99
Number of critics 2
Critic learning rate 3× 10−4

Critic optimizer beta 0.9
Critic tau 0.005
Actor learning rate 1× 10−4

Actor optimizer beta 0.9
N-step TD calculation 1
Initial temperature 0.1
Temperature learning rate 1× 10−4

Temperature optimizer beta 0.9
Initial alpha α ∈ [0.001, 0.01, 1, 5, 10, 20, 40]

Alpha learning rate 1× 10−4 or 0
Alpha optimizer beta 0.9
Alpha threshold 10
Number of actions sampled 10

Table 3.2: Hyperparameter settings for the CQL algorithm during the CarRacing-v0
training. The first column contains the hyperparameter name and the second column the
respective value.

3 APPROACH 36

As network architecture, we decided for the classical "Nature DQN" architecture style
[44]. As activation function was ReLU used. This network architecture was also used for
the behavior cloning algorithm.

Figure 3.4: Small CNN in LeNet style

3 APPROACH 37

3.2 CARLA Environment

Figure 3.5: Graphic shows example image of
the Carla environment

CAR Learning to act (CARLA) is an open-
source code based driving simulator. It al-
ready provides pre-build maps with streets,
buildings, pedestrians, and vehicles. In
addition, different car sensors such as Li-
DAR sensors or different cameras are im-
plemented. State information like velocity,
acceleration, and location can quickly be
withdrawn from the simulator [15].

3.2.1 Environment

Within the simulator, we decided to use
an RGB camera placed at the front of the bonnet. The reason for this is that most
car manufacturers only use cameras these days. Furthermore, we chose a resolution of
84x84x3 pixels. This resolution is clear enough to determine street lines and obstacles
but blurry enough to ensure a fast computation. Furthermore, the action space of the
Carla environment consists of the following variables: steering wheel angle ∈ [−1, 1],
acceleration ∈ [0, 1] and brake ∈ [0, 1]. To reduce the number of variables, we decided
to combine acceleration and brake to throttle/brake ∈ [−1, 1] with negative values as
braking and positive values as accelerating.

Figure 3.6: Actual camera image in the Carla
simulator. Used as decoder input.

Reward function Design The self-
defined task in Carla was to keep the
lane and drive with a steady velocity. To
achieve this behavior, the reward function
is crucial. In contrast to the CarRacing-v0
environment, in Carla there is no prede-
fined reward function. Therefore, it was
necessary to implement our own. In gen-
eral, a reward function consists of reward
components and penalty components. We
punish undesired behavior such as speed-
ing, not moving, or driving off the lane
with penalty components and reward de-
sired behavior with reward components.

The final reward function consists of six

3 APPROACH 38

components: rs as speed reward, rh as
heading reward, rd as distance-to-centerline reward, rsd as steering-difference reward, rs
as steering reward and rb as braking reward.

rtotal =

rb v ≤ 0

ws ∗ rs + wh ∗ rh + wd ∗ rd + wsd ∗ rsd + rs else

The weights wi sum up to 1. The final results were achieved with ws = 0.2, wh = 0.1,
wd = 0.5 and wsd = 0.2. Moreover, we achieved better results with the reward functions in
function form and not scalar values (figure 3.7). With this combination, a steady driving
behavior between the lane markings was accomplished.

Speed Reward The speed reward motivates the agent to drive with a velocity near
the speed limit. It receives a fast decreasing positive reward if a velocity bigger than the
speed limit is reached.

Heading reward First of all, the heading of the car in relation to the street direction
is calculated. Afterwards, the heading reward rewards driving in the street direction. If
there is a huge difference between the car heading and the street heading, the reward is
decreasing.

Distance-to-centerline Reward The distance-to-centerline reward calculates an
imaginary perfect line between the two lane markings. The agent is trained to follow this
imaginary line and is nudged to deviate as little as possible from this line. In the case of
deviating, it receives a fast decreasing positive reward.

Steering Difference Reward The steering difference reward rewards slow steering
maneuvers. The reward calculates the difference between steeringt and steeringt−1 and
rewards minor differences. This approach prevents swerving of the car.

Steering Reward The steering reward is designed to prevent sharp turns of the car
or quick lane changes. It only gives negative rewards if the steering wheel angle is larger
or less than ±0.3. With optimal driving behavior, this reward should not be active and
is therefore not weighted.

Braking Reward In the beginning, we had the problem that the car was not moving.
Even with higher speed reward weights, such as ws = 0.8 the car was not moving. To
prevent this behavior, we introduced the braking reward, which penalizes braking if the
car’s velocity is less or close to zero. During the driving, this reward is not active.

3 APPROACH 39

Figure 3.7: Visualization of the respective reward functions. Top left: distance-to-
centerline reward, top middle: speed reward, top right: braking reward, bottom left:
steering difference reward, bottom middle: steering reward, bottom right: heading re-
ward

3.2.2 Carla SAC

Figure 3.8: Graphic shows the map layout
and the three spawn points (in red) during
the training phase and the evaluation point
(in blue)

To confirm that the reward function is
working, we learned a SAC agent. If the
SAC model can solve the task with our
own reward function, the CQL algorithm
should also be able to solve the task. For
the actual training, we used the same hy-
perparameters as stated in table 3.1.

During the training phase, we used the
Carla Map 04 due to the long highways
and the clear streets without traffic lights.
In addition, we did not spawn any other
cars or passengers on the map to keep the
task as simple as possible. Furthermore, to
increase the environment diversity during
the training, we used three spawn points
around the map (see figure 3.8 red points).
For the evaluation, another spawn point
was used to observe the car’s performance
(see figure 3.8 blue points). Every time, we evaluated 500 steps.

Because the reward function is designed to add up to 1, a maximum reward of 500 was

3 APPROACH 40

Figure 3.9: SAC (Pixel) results in the Carla environment.

possible. The SAC algorithm achieved a reward between 300 and 400 out of 500 on a
constant level. Since we designed the reward function by ourselves, we had to confirm
that the car fulfilled the task. For this, we saved the observations and put them in a
video. Manually, we confirmed that the desired behavior, lane keeping, was fulfilled. This
ensured that the reward function is working properly.

3.2.3 Dataset generation

For the CQL algorithm, we made five different datasets. To create these datasets, we
used the Carla autopilot. With the autopilot, the perfect dataset was created. To get
worse datasets, a so called action noise was used. Hereby, we used a normal distribution
with mean zero and different standard deviations with values from 0.2 to 0.8. The normal
distribution was layered over the autopilot actions and clipped so the values are between
-1 and 1 for the steering wheel angle and throttle/brake. The following table provides an
overview of the average reward, the steering wheel angle, and the throttle/brake distribu-
tion of the respective dataset. With increased action noise, the steering wheel angles get
pushed to -1 and 1, and more unnatural speeding behavior is observable. Since the map
consists primarily of straight lanes and some long curves, the steering wheel angle in the
expert dataset is mostly around zero. More unnatural behavior is seen in datasets with
higher action noise. High steering wheel angles imply uncontrolled driving behavior and

3 APPROACH 41

quick swerving during the driving. Nevertheless, the car stays in all datasets mainly in
the lane. Additionally, every dataset contains 50k transitions.

Figure 3.10: Overview of the datasets with the respective reward, steering distribution
and throttle/brake distribution.

3.2.4 CQL Approach

In this thesis, we focused on the effect of the α value on the performance. Therefore,
we tested the following values: α ∈ [0.01, 0.1, 1, 5, 10]. The goal is to see if higher val-
ues perform better on good datasets. Moreover, the performance is set in contrast to
behavior cloning. For the hyperparameters, we used the same as in table 3.2 but with
observation space 84, frame stack 4 and α ∈ [0.01, 0.1, 1, 5, 10]. Furthermore, the same
CNN architecture was used.

In general, we expect that behavior cloning should perform at best with the expert dataset
and has a decreasing performance with decreasing dataset quality. On the other way
around, we expect CQL to perform better than behavior cloning on the poor datasets.

4 EXPERIMENTS 42

4 Experiments

Several experiments were conducted to evaluate the performance of CQL in the CarRacing-
v0 and Carla environment. The results are summarized in section 4.1.

Advantages Offline RL during the Training During the experiment phase
of this thesis, we recognized a notable advantage of offline RL. In general, the most time-
intensive phase during online learning is to find an appropriate hyperparameter setting.
Usually, for the classical RL environments such as the Atari Games or the PyBullet
environments, already tuned models exist. Unfortunately, not for the Box2D environment
CarRacing-v0. Much time was spent finding the correct and functional hyperparameter
setting. This process is very time-intensive. Due to the lack of resources, we had to train a
model for two to four days and evaluate afterwards the performance. This process repeats
until an appropriate hyperparameter setting is found. The CarRacing-v0 environment
has the advantage that the reward is already predefined. Therefore, we can measure the
performance by looking at the achieved reward. In the Carla environment, it was not
possible to evaluate the current model by just looking at the average reward because
we defined an own reward function. Instead, we had to evaluate the model manually
by watching training videos. This made the online training even more time-intensive.
Furthermore, every time we restated a training in online RL, the buffer has to be filled
again with trajectories. We do not profit from past trainings because all trajectories are
deleted from the buffer when the training is restarted. In contrast to this, in offline RL,
it is only necessary to create a dataset once. Now, It is not needed to collect trajectories
again. The only time-consuming task is the hyperparameter setting, but the already
collected dataset is always reused, making offline RL less time-intensive.

4.1 Results

The main experiments of this work evaluate the performance and sample efficiency of CQL
on different datasets with different qualities. Hereby, we focused on different α values and
the sensitivity of CQL on these different values.

4.1.1 Performance CarRacing-v0

In the following, we see the performance of CQL with different α values on the low reward
dataset.

On average, the non-learning α approach performs better than the learning α approach.
Only in one scenario, with α = 0.001, the learning α performs better than the constant
α but cannot keep the performance level. All other learning α values cannot achieve a

4 EXPERIMENTS 43

Figure 4.1: Experimental results on the low reward dataset with an average reward of
426. An 1-D gaussian filter with σ = 5 was used to even out short-term volatility.

positive reward. The learning α approach seems very unstable. In the constant approach,
all α values achieve a positive reward. Lower α values perform better than bigger values.
With α = 0.01 and α = 0.001, it was possible to outperform the dataset performance
and behavior cloning. Only moderate results are achieved with higher values such as
α ∈ [1, 5, 10].

The experimental results on the high reward dataset are depicted in figure 4.2.

Figure 4.2: Experimental results on the high reward dataset with an average reward of
851. An 1-D gaussian filter with σ = 5 was used to even out short-term volatility.

Again, the high reward dataset results confirm that constant α values perform better than
learning α values. In the learning approach, only α = 0.01 was able to outperform behav-

4 EXPERIMENTS 44

ior cloning, but cannot hold the performance level and quickly decreased performance-
wise. Moreover, no α value was able to reach the dataset reward level. Similar in the
constant approach, only α = 0.01 performed better than behavior cloning, but decreased
performance-wise as well. In both settings, all other α values besides α = 0.01 did not
reach a positive reward or did not reach behavior cloning level. We were not able to
confirm that higher α values perform better on good datasets. We assume that this can
be attributed to the highly stochastic environment of CarRacing-v0. Reasons for the bad
performance might be the underlying dataset. During the evaluation, we tested the cur-
rent model ten times. After every evaluation run, the car resets, and a completely new
map with a new layout is created. We presume that the maps during CQL evaluation
differed too much from the maps in the dataset.

Furthermore, by looking at the behavior cloning performance, we can see that it performs
on both datasets equally. Therefore, we assume that the network capacity is too limited.
Regarding the network architecture, we tested deeper and bigger architecture styles and
were able to achieve a performance of approximately 600 on the high reward dataset.
Therefore, an additional reason for the bad performance of CQL might be the network
capacity limitation. Due to computational limitations, we were not able to test CQL with
bigger networks.

4 EXPERIMENTS 45

4.1.2 Performance Carla

In the following, we see the performance of CQL with different α values on the different
Carla datasets. Hereby, we tested α ∈ [0.01, 0.1, 1, 5, 10] on the expert dataset as well as
noise dataset 0.2 - 0.8.

Performance Reward Function

As we can see in the following illustration 4.3, in all cases, behavior cloning was outper-
formed. Unfortunately, no consistency between the α values and the dataset quality is
observable.

On the expert dataset, α = 0.01 performed by far the best. On the noise dataset 0.2,
α = 5 achieved the best reward, whereas α = 0.1, α = 5 and α = 10 were the best on the
noise dataset 0.4. On noise dataset 0.6, α = 5 was the best and on the noise dataset 0.8,
α = 1 achieved the highest reward. Moreover, only on the noise dataset 0.6 and noise
dataset 0.8, CQL was able to reach dataset reward level. For now, the theory that higher
α values perform better on good datasets and lower α values better on bad datasets could
not be confirmed.

Nevertheless, since we created our own reward function, the reward performance seen
in figure 4.3 is only conditionally meaningful. Behavior such as excessively speeding or
driving fast in circles might lead to high rewards. Therefore, it makes more sense to look
at other parameters. Since the task was to drive with constant speed steadily in line, we
measured the distance to the center line, as indicator for the lane keeping task and the
vehicle velocity, as indicator for the steadiness of the speeding behavior. For that reason,
we chose the best models of the different α values and measured again the performance
with the new metrics. The results are seen in figure 4.4.

Performance New Metrics

Alpha 0.01 In figure 4.4, we see that the smallest α = 0.01 does not perform well on
any dataset. Often the car stops moving. Furthermore, we see a high volatility in the
distance to center line, which indicates fast maneuvering with high steering wheel angles.
This contradicts our self-imposed task to drive steadily in lane. Even though α = 0.01

was not able to perform very well, we can see on the noise dataset 0.4 that the model
learned not to cross the street line. The car crossed the street line, reduced the velocity
afterwards and began to recenter to the middle line. Nevertheless, α = 0.01 seems too
low to perform good on any dataset.

Alpha 0.1 With α = 0.1, the same difficulty is observable. Often the car stops moving.
Nevertheless, on the noise dataset 0.4, the model was able to keep the lane very well and
drove with a high and steady velocity. Furthermore, although stopping at the beginning
of the episode, α = 0.1 performed very well on the noise dataset 0.6. Besides one large

4 EXPERIMENTS 46

F
ig
ur
e
4.
3:

T
he

fig
ur
e
sh
ow

s
th
e
pe

rf
or
m
an

ce
of

th
e
C
Q
L
al
go

ri
th
m

on
th
e
di
ffe

re
nt

da
ta
se
ts
.
To

p
le
ft

is
th
e
ex
pe

rt
da

ta
se
t,

to
p
m
id
dl
e

th
e
no

is
e
da

ta
se
t
0.
2,

to
p
ri
gh

t
th
e
no

is
e
da

ta
se
t
0.
4,

bo
tt
om

le
ft

th
e
no

is
e
da

ta
se
t
0.
6
an

d
bo

tt
om

m
id
dl
e
th
e
no

is
e
da

ta
se
t
0.
8.

A
n
1-
D

ga
us
si
an

fil
te
r
w
it
h
σ

=
5
w
as

us
ed

to
ev
en

ou
t
sh
or
t-
te
rm

vo
la
ti
lit
y.

4 EXPERIMENTS 47

F
ig
ur
e
4.
4:

T
he

fig
ur
e
sh
ow

s
th
e
pe

rf
or
m
an

ce
of

th
e
C
Q
L

al
go

ri
th
m

on
th
e
di
ffe

re
nt

da
ta
se
ts
.
H
er
eb
y,

w
e
fo
cu
se
d
on

th
e
pa

ra
m
et
er
s

ve
hi
cl
e
ve
lo
ci
ty

an
d
di
st
an

ce
to

ce
nt
er

lin
e.

4 EXPERIMENTS 48

distance to centerline outlier, the overall small distance to centerline values are recogniz-
able. Here, we can see that lower α values perform better on worse datasets. The best
fitting α value for the noise dataset 0.4, 0.6 and 0.8 seems α = 0.1.

Alpha 1 The α = 1 performance on the noise dataset 0.2 must be highlighted. Here, we
were able to produce one of the best results. The car kept close to the optimal distance to
center line and accelerate constantly without losing the center line. Furthermore, we can
observe the trade-off between vehicle velocity and distance to centerline. With increased
vehicle velocity, it is harder for the model to keep the car close to the centerline. Overall,
α = 1 showed a better performance on better datasets. However, on the expert dataset,
the performance was not good. Same reasoning as in 4.1.1, we assume that the trajectories
in the expert dataset are too good and do not show recovery behavior.

Alpha 5 Here, α = 5 performs the best on the noise dataset 0.2. With decreasing
dataset quality, a higher distance to centerline oscillation is seen. When we compare the
results of α = 5 and α = 1 on the noise dataset 0.2, we see that α = 1 was able to drive
steadier. Furthermore, we see that worse dataset quality results in worse driving behavior
with α = 5. Higher deviation from the centerline is observable.

Alpha 10 The worse the dataset gets, the more prominent is the oscillating driving
behavior. Overall, α = 10 does not perform very well. Therefore, we assume that α = 10

is too high to perform good on the datasets.

Underlying Data The following overview shows the velocity and distance to center-
line behavior in the respective data sets. With increased noise, we see a higher variance
in the distance to centerline and vehicle velocity. The higher the α value, the closer the
CQL algorithms stays to the dataset. Therefore, higher α values perform worse on bad
datasets since the underlying data shows more oscillating behavior and the model tries to
keep close to the dataset.

In addition, the higher speeding of the CQL models compared to the dataset speeding is
explained as follows. Usually, the speed limit is 15 km

h in Town04, whereas the autopilot,
to stay ideally in the lane, only reaches around 5 km

h . However, the reward function is
designed for 15 km

h . Therefore, the car reaches higher rewards when driving fast than the
5 km

h shown in the dataset.

4 EXPERIMENTS 49

Figure 4.5: The figure shows the velocity and distance to center line behavior in the
respective dataset.

In general, the CQL algorithm can solve the lane keeping task . Overall, not as good and
not as smooth as online RL, but it is possible. The bad performance on the expert dataset
is explained through the lack of recovery trajectories. The model does not see trajectories
showing recovery behavior in the dataset and, therefore, cannot recover from bad states.
A mixture of expert dataset with noise dataset 0.8 might lead to better results. Here the
ratio between good and bad dataset must be studied.

5 CONCLUSION 50

5 Conclusion

This work aimed to train an agent to stay in lane and drive at a constant speed using
offline RL. First, the role of deep learning in autonomous driving, the components of
autonomous driving, and various deep learning techniques were presented. Then, the
theoretical foundations of RL were presented, followed by a discussion of offline RL.
Afterward, the main algorithm of this work, CQL, was introduced. For this purpose,
CQL was evaluated in the CarRacing-v0 and Carla environments. Hereby, we focused on
the sensitivity of the α parameter.

Several experiments were conducted in pixel-based and continuous action environments
to evaluate the performance of CQL. First, we focused on the CarRacing-v0 environment.
CarRacing-v0 has the advantage that the reward function is already predefined. Here we
focused on the optimization of the CQL hyperparameters. Therefore, it was necessary to
generate a dataset beforehand. Unfortunately, there was no benchmark dataset in D4RL
[18]. Therefore, to create the dataset, we trained a SAC agent to completion so that
model could solve the environment. Afterward, we used this agent to generate a high
and low reward dataset. Following, we evaluated the performance of very high and very
low α values on the two different datasets. We used behavior cloning as a comparison
algorithm. In the low reward dataset, CQL outperformed behavior cloning and performed
better than the dataset. In the high reward dataset, CQL struggled to exceed behavior
cloning and was not able to reach dataset level. We hypothesize that the underlying data
set is the problem. In the CarRacing environment, the track layout is recreated after
every reset. Therefore, we believe that the layouts in the dataset differ too much from
the layouts during the training. In other words, our agent could not generalize well.

In the Carla environment, we created five different datasets. The best one was created
by an autopilot. The other four datasets were created through a modified autopilot with
continuously increased action noise. On all datasets, we were able to show that CQL can
outperform behavior cloning. Furthermore, it was possible to show that lower α values
perform better the poorer the dataset and higher α values perform better the better the
dataset. Nevertheless, the performance of CQL in the environments, CarRacing-v0 and
Carla, is not as stable as online RL, but generally, CQL was able to solve the tasks.

Causes of errors CQL In general, CQL is an algorithm that is very sensitive to
the α value. Much fine-tuning is necessary to find the best-working α value. In our case,
the range of α values that worked best were between 5 and 0.1, which results in a long
fine-tuning process.

Generally, pixel-based observations have a high volatility since a single color change in one
pixel represents a new state. This requires high implementation stability. CarRacing-v0

5 CONCLUSION 51

and Carla represent high-dimensional environments which makes it hard to perform on.
CQL might perform on low-dimensional environments better.

Another error-prone CQL aspect is the choice of data in the underlying dataset. As we
were able to see in the CarRacing-v0 environment, good data does not necessarily mean
good performance. Here, it is important to add recovery trajectories to good datasets.
A mixture of an expert dataset with a more noisy dataset might help. This stresses the
importance of diversity in the dataset to cover as much different states as possible. By
that, the algorithm can recognize different states better and facilitates recovery from bad
states.

5.1 Discussion

Methods such as CQL offers promising solutions for real-world problems by using large
amounts of data. Especially real-world problems such as autonomous driving are very
safety-critical. Therefore, learning from collected data helps to solve autonomous driv-
ing with RL. Nevertheless, the offline RL approach is still very error-prone, and so far,
there exists no deployment in the real world. The experience is limited to simulated
environments.

5.2 Outlook

In our approach, we used a simple CNN with three convolutional layers. Due to hardware
limitations, we were not able to use bigger network structures with CQL. Even with this
relatively small network, the Graphical Processing Unit (GPU) was already fully occupied.
For example, in the CarRacing-v0 environment, we achieved a reward of 600 on the high
reward dataset with a deeper behavior cloning network. Therefore, we assume that CQL
could also benefit from an increased layer size.

In addition, Agarwal et al. [1] highlights the importance of large and diverse datasets and
shows that offline RL benefits from them. In this thesis, we worked with 50k transitions
in the CarRacing-v0 environment as well as in the Carla environment. In the benchmark
D4RL [18] datasets, the size of the datasets was scaled up to 1M transitions. Especially in
the expert datasets, it might be essential to increase the diversity and add transitions that
show recovery behavior from bad states. Here, the right mixture between good transitions
and recovery transitions might be crucial.

Moreover, Sinha et al. [64] was able to show the performance increase with image aug-
mentation. Augmentations such as rotation or color jittering are common in computer
vision research. Rotating an image with a slight angle still maintains the vital information
but increases the abstractness. It was possible to show that on medium datasets, image

5 CONCLUSION 52

augmentation can increase the CQL performance in a wide range of environments and
tasks [64]. Therefore, it might improve the performance of CQL in the Carla environment.

REFERENCES 53

References

[1] Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective
on offline reinforcement learning. In International Conference on Machine Learning
(2020), PMLR, pp. 104–114.

[2] Albawi, S., Mohammed, T. A., and Al-Zawi, S. Understanding of a con-
volutional neural network. In 2017 International Conference on Engineering and
Technology (ICET) (2017), pp. 1–6.

[3] Amit, R., Meir, R., and Ciosek, K. Discount factor as a regularizer in rein-
forcement learning. In International conference on machine learning (2020), PMLR,
pp. 269–278.

[4] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew,

B., and Mordatch, I. Emergent tool use from multi-agent autocurricula. arXiv
preprint arXiv:1909.07528 (2019).

[5] Barnard, W. Lidar v. cameras - the autonomous vision race, May 2020.

[6] Behere, S., and Torngren, M. A functional architecture for autonomous driving.
In 2015 First International Workshop on Automotive Software Architecture (WASA)
(2015), IEEE, pp. 3–10.

[7] Bertoncello, M., and Wee, D. Ten ways autonomous driving could redefine the
automotive world. McKinsey & Company 6 (2015).

[8] Blackburn. Introduction to reinforcement learningnbsp;: Markov-decision process,
Aug 2020.

[9] Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B.,

Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang,

X., Zhao, J., and Zieba, K. End to end learning for self-driving cars. CoRR
abs/1604.07316 (2016).

[10] Britz, D. Exploration vs. exploitation, Apr 2014.

[11] Campbell, M., Egerstedt, M., How, J. P., and Murray, R. M. Autonomous
driving in urban environments: approaches, lessons and challenges. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 368, 1928 (2010), 4649–4672.

[12] Capasso, A. P., Bacchiani, G., and Broggi, A. From simulation to real world
maneuver execution using deep reinforcement learning, 2020.

REFERENCES 54

[13] Delhi, S. I.-N. Automotive revolution & perspective towards 2030. Auto Tech
Review 5, 4 (2016), 20–25.

[14] Dong, H., Dong, H., Ding, Z., Zhang, S., and Chang. Deep Reinforcement
Learning. Springer, 2020.

[15] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V.

CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Con-
ference on Robot Learning (2017), pp. 1–16.

[16] Fagnant, D. J., and Kockelman, K. Preparing a nation for autonomous vehicles:
opportunities, barriers and policy recommendations. Transportation Research Part
A: Policy and Practice 77 (2015), 167 – 181.

[17] Folkers, A., Rick, M., and Büskens, C. Controlling an autonomous vehicle
with deep reinforcement learning. In 2019 IEEE Intelligent Vehicles Symposium (IV)
(2019), IEEE, pp. 2025–2031.

[18] Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets
for deep data-driven reinforcement learning, 2020.

[19] Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learn-
ing without exploration. In International Conference on Machine Learning (2019),
PMLR, pp. 2052–2062.

[20] Gao, Y., Liu, Y., Zhang, Q., Wang, Y., Zhao, D., Ding, D., Pang, Z.,

and Zhang, Y. Comparison of control methods based on imitation learning for
autonomous driving. In 2019 Tenth International Conference on Intelligent Control
and Information Processing (ICICIP) (2019), IEEE, pp. 274–281.

[21] Gottesman, O., Johansson, F., Meier, J., Dent, J., Lee, D., Srinivasan,

S., Zhang, L., Ding, Y., Wihl, D., Peng, X., et al. Evaluating reinforcement
learning algorithms in observational health settings. arXiv preprint arXiv:1805.12298
(2018).

[22] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Reinforcement learning
with deep energy-based policies. CoRR abs/1702.08165 (2017).

[23] Hirz, M., and Walzel, B. Sensor and object recognition technologies for self-
driving cars. Computer-aided design and applications 15, 4 (2018), 501–508.

[24] Hui, J. Rl - dqn deep q-network, Mar 2019.

REFERENCES 55

[25] Isele, D., Rahimi, R., Cosgun, A., Subramanian, K., and Fujimura, K.

Navigating occluded intersections with autonomous vehicles using deep reinforcement
learning, 2018.

[26] Juliani, A. Maximum entropy policies in reinforcement learning amp; everyday life,
Nov 2018.

[27] Karagiannakos, S. The idea behind actor-critics and how a2c and a3c improve
them, Nov 2018.

[28] Karunakaran, D. Q-learning: a value-based reinforcement learning algorithm,
Sep 2020.

[29] Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam,

V.-D., Bewley, A., and Shah, A. Learning to drive in a day. In 2019 International
Conference on Robotics and Automation (ICRA) (2019), IEEE, pp. 8248–8254.

[30] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A. A., Yo-

gamani, S., and Pérez, P. Deep reinforcement learning for autonomous driving:
A survey. IEEE Transactions on Intelligent Transportation Systems (2021).

[31] Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yo-

gamani, S., and Pérez, P. Deep reinforcement learning for autonomous driving:
A survey. IEEE Transactions on Intelligent Transportation Systems (2021), 1–18.

[32] Kumar, A. Data-driven deep reinforcement learning, Dec 2019.

[33] Kumar, A. Offline reinforcement learning: How conservative algorithms can enable
new applications, Dec 2020.

[34] Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information
Processing Systems (2019), pp. 11784–11794.

[35] Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779 (2020).

[36] Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas,

A. Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990
(2020).

[37] Levine, S. Decisions from data: How offline reinforcement learning will change how
we use ml, Sep 2020.

REFERENCES 56

[38] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems, 2020.

[39] Lindgren, A., and Chen, F. State of the art analysis: An overview of advanced
driver assistance systems (adas) and possible human factors issues.

[40] Litman, T. Autonomous vehicle implementation predictions. Victoria Transport
Policy Institute Victoria, Canada, 2017.

[41] Liu, J., Liu, S., and Gu, X. Soft q network, 2020.

[42] Mirchevska, B., Blum, M., Louis, L., Boedecker, J., and Werling, M. Re-
inforcement learning for autonomous maneuvering in highway scenarios. InWorkshop
for Driving Assistance Systems and Autonomous Driving (2017), pp. 32–41.

[43] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., and Riedmiller, M. Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602 (2013).

[44] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-

mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., et al. Human-level control through deep reinforcement learning. nature 518,
7540 (2015), 529–533.

[45] Nachum, O., and Dai, B. Reinforcement learning via fenchel-rockafellar duality.
CoRR abs/2001.01866 (2020).

[46] Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforce-
ment learning with offline datasets, 2020.

[47] Ni, J., Chen, Y., Chen, Y., Zhu, J., Ali, D., and Cao, W. A survey on the-
ories and applications for self-driving cars based on deep learning methods. Applied
Sciences 10, 8 (2020), 2749.

[48] Okuda, R., Kajiwara, Y., and Terashima, K. A survey of technical trend
of adas and autonomous driving. In Proceedings of Technical Program - 2014 In-
ternational Symposium on VLSI Technology, Systems and Application (VLSI-TSA)
(2014), pp. 1–4.

[49] OpenAI. Part 1: Key concepts in rl.

[50] Or, B. Penalizing the discount factor in reinforcement learning, Oct 2020.

[51] Orenstein, D. Stanford team’s win in robot car race nets $2 million prize, Oct
2005.

REFERENCES 57

[52] Osinski, B., Jakubowski, A., Milos, P., Ziecina, P., Galias, C., Homo-

ceanu, S., and Michalewski, H. Simulation-based reinforcement learning for
real-world autonomous driving. CoRR abs/1911.12905 (2019).

[53] Paden, B., Cáp, M., Yong, S. Z., Yershov, D. S., and Frazzoli, E. A
survey of motion planning and control techniques for self-driving urban vehicles.
CoRR abs/1604.07446 (2016).

[54] Pendleton, S. D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng,

Y. H., Rus, D., and Ang, M. H. Perception, planning, control, and coordination
for autonomous vehicles. Machines 5, 1 (2017), 6.

[55] Petridou, E., and Moustaki, M. Human factors in the causation of road traffic
crashes. European journal of epidemiology 16, 9 (2000), 819–826.

[56] Pomerleau, D. A. Alvinn: An autonomous land vehicle in a neural network.
Tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA ARTIFICIAL INTEL-
LIGENCE AND PSYCHOLOGY . . . , 1989.

[57] Proff, Pottebaum, W. Autonomous driving, moonshot project with quantum
leap form hardware to software and ai focus.

[58] Quan, Y. S., and Chung, C. C. Approximate model predictive control with
recurrent neural network for autonomous driving vehicles. In 2019 58th Annual
Conference of the Society of Instrument and Control Engineers of Japan (SICE)
(2019), pp. 1076–1081.

[59] Raats, K., Fors, V., and Pink, S. Trusting autonomous vehicles: An interdisci-
plinary approach. Transportation Research Interdisciplinary Perspectives 7 (2020),
100201.

[60] Seno, T. d3rlpy: An offline deep reinforcement library. https://github.com/

takuseno/d3rlpy, 2020.

[61] Shaheen, S. A., Cohen, A. P., and Roberts, J. D. Carsharing in north america:
Market growth, current developments, and future potential. Transportation Research
Record 1986, 1 (2006), 116–124.

[62] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van

Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,

V., Lanctot, M., et al. Mastering the game of go with deep neural networks and
tree search. nature 529, 7587 (2016), 484–489.

[63] Simonini, T. An intro to advantage actor critic methods: let’s play sonic the
hedgehog!, Jul 2018.

https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy

REFERENCES 58

[64] Sinha, S., and Garg, A. S4rl: Surprisingly simple self-supervision for offline
reinforcement learning. arXiv preprint arXiv:2103.06326 (2021).

[65] Stamatiadis, N., and Deacon, J. A. Trends in highway safety: effects of an aging
population on accident propensity. Accident Analysis & Prevention 27, 4 (1995),
443–459.

[66] Suran, A. On-policy v/s off-policy learning, Jul 2020.

[67] Sutton, R. S., and Barto, A. G. Reinforcement Learning: An Introduction,
second ed. The MIT Press, 2018.

[68] Tang, H. Learning diverse skills via maximum entropy deep reinforcement learning,
Oct 2017.

[69] Van Brummelen, J., O’Brien, M., Gruyer, D., and Najjaran, H. Au-
tonomous vehicle perception: The technology of today and tomorrow. Transportation
research part C: emerging technologies 89 (2018), 384–406.

[70] Wu, Y., Tucker, G., and Nachum, O. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361 (2019).

Assertion

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, September 6, 2022 Pascal Schindler

	Introduction
	Offline Reinforcement Learning in Autonomous Driving
	Outline
	Notation

	Backround and Related Work
	Deep Learning in Autonomous Driving
	Reinforcement Learning
	Markov Decision Process
	The Reinforcement Learning Goal
	Value Functions and Bellman Equations

	Off-Policy Reinforcement Learning
	Q-Learning and DQN
	Soft-Q-Learning (SQL)
	Soft-Actor-Critic Algorithm (SAC)

	Offline Reinforcement Learning
	Policy Constraint Methods
	Lower-Bounded Policy-Values Methods

	Behavior Cloning (BC)

	Approach
	CarRacing-v0
	Environment
	CarRacing-v0 SAC
	Dataset generation
	CQL Approach

	CARLA Environment
	Environment
	Carla SAC
	Dataset generation
	CQL Approach

	Experiments
	Results
	Performance CarRacing-v0
	Performance Carla

	Conclusion
	Discussion
	Outlook

