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Abstract

This thesis addresses how to further improve the prediction of volatile residential elec-

tricity loads in the context of energy communities. New decentralized local community

concepts including renewable energy production are central components of the energy

transition. An important component of these concepts is accurate load forecasting. The

latter enables operating home energy management systems and thus increases local e�-

ciency and self-consumption. Various cluster approaches exist in the literature to support

models by pre-grouping raw input data. In this work, hourly electricity loads for 19 UK

households were investigated. Using the k-Means algorithm, repetitive daily profiles were

identified across all households. On the one hand, this allowed investigating typical energy

consumption patterns at household level. On the other hand, the clustering supported

models in predicting more accurately. The e↵ect of clustering daily load profiles on the

prediction performance was tested for two time resolutions. Using the Normalized Root

Mean Squared Error, Support Vector Regression and the Random Forest Regressor were

compared on the di↵erent clustered subgroups.

The main result of the work is that di↵erent daily profiles could be identified across a set of

households. With the help of these results, the Normalized Root Mean Squared Error could

be reduced. For the prediction at daily resolution, this e↵ect was strongly pronounced,

while at hourly resolution of the residential electricity loads, a slight improvement could

be achieved.
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1. Introduction

”Local energy systems can potentially contribute to the overall energy and climate objec-

tives, helping reverse energy consumption and emissions trends worldwide.”

– Koirala et al. (2016)

The World Resources Institute (WRI) considers the energy supply of the future and a

societal transformation towards more sustainable energy concepts to be among the great-

est and most urgent challenges of our time (World Resources Institute, 2018). The tense

situation in the energy sector due to climate change was recently further exacerbated by

geopolitical conflicts. This clarified once again the great dependence on fossil fuels and

their main exporters. That is why, currently many nations are facing major challenges in

securing their future energy supply.

In contrast to fossil fuels, renewable energy based on wind, water, or solar energy, for ex-

ample, are available in almost unlimited quantities, regardless of the amount used. More-

over, they can often be used locally and only have to be transported over short distances.

(Etapart AG, n.d.)

It is precisely at this point of local energy production that local district concepts come

into the picture. The EU emphasizes that energy communities are an important part of

the aimed energy transition until 2050 and that local actors play a crucial role in the tran-

sition process. (European Commission, n.d.) A precise definition of Renewable Energy

Communities (REC) will be given in Chapter 2.

The ”State of the Energy Union report” of the European Commission from October 2021

confirms the enormous potential contribution of local actors and energy communities: At

the moment, more than 8400 energy communities, with at least two million participating

citizens, exist in the EU. The capacities of these projects led by citizens were estimated to

contribute with up to 7% to the national energy production. With about 50%, the largest

share was generated by solar photovoltaic systems. (Schwanitz et al., 2021)

At the same time, advances in technology, especially the increasingly widespread smart me-

ters, are shifting the focus from larger aggregation levels to individual households. In this

context, applications such as Home Energy Management Systems (HEMS), which optimize

energy consumption together with self-production, play an important role. Currently, the

main goal of the HEMS is to plan and allocate the next day’s household energy opera-

tions. This involves taking into account weather conditions and the associated expected

electricity generation as well as future electricity demand. The latter depends strongly on

the behaviour of the inhabitants. (Yildiz et al., 2018a)

Therefore, accurate predictions of residential load profiles are important for e�cient HEMS

(Rodrigues et al., 2022). Due to the great uncertainty of the drivers of short-term load

profiles at household level, this is a highly topical research field (Jiang et al., 2021). An

important component is to understand potential patterns in electricity consumption at the

household level. In this thesis, this was addressed by means of a statistical data analysis

as well as a detailed cluster analysis. In addition, the pre-grouping of load profiles may

2
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assist models in the challenging prediction. Di↵erent cluster approaches, which will be

discussed in Chapter 2, have already been applied in literature. This work builds on these

results and applies clustering in a modified scenario.

To summarize, the following research questions were investigated in this thesis:

RQ1. Which general patterns of electricity usage can be observed on household level?

RQ2. Does and if how much does clustering improve the forecast performance for the given

dataset?

The following work is structured as follows. First, in Chapter 2, relevant literature from the

field and its relation to this work are considered. In Chapter 3, the dataset is described,

together with a short exploratory data analysis and a methodology outline. Chapter

4 presents the exact clustering approach and results, before Chapter 5 builds on these

findings with the prediction models. Finally, Chapter 6 closes the thesis with a concluding

discussion as well as future work steps.

3



2. Literature and Theory

2.1. Definitions

Smart Meter: The term smart meter appeared when microprocessors first were included

in static meters. It describes an electronic meter which can collect information on various

energy consumption characteristics. Smart meters bring advantages for both customers

and electricity suppliers. An important feature is real-time energy recording and the report

of this data in regular time intervals. (Koponen et al., 2008)

Renewable Energy Community (REC): The European Union defines a Renewable Energy

Community in its final “Clean Energy Package” as a legal entity in accordance with the

corresponding national law. It is autonomous, open and voluntary for participation and

run by the concerning shareholders. These are living in direct proximity of the renewable

energy project for which the legal entity is responsible. The primary focus is not on

financial profits but rather on “environmental, economic and social community benefits for

its shareholder or members” [p. 5]. (Jeriha, 2019)

2.2. State-of-the-Art: Energy Load Forecasting in the context of

Renewable Energy Communities (REC)

In this section, approaches and concepts presented so far in literature are discussed. More-

over, there will be a comparison of obtained results. It is important to distinguish between

energy load forecasting in general and load forecasting for Renewable Energy Communi-

ties (REC). The focus of this thesis and state-of-the-art presentation is on load analysis

and prediction for households in energy communities. RECs have di↵erent characteristics

and hold other premises than for example Central Business Districts (CBD) or normal

power grids (Pirbazari et al., 2021). While power grids operate on a very high aggregation

level, RECs are a local concept and rely on interaction with the power grid to operate.

CBDs are often much bigger than RECs and therefore balancing e↵ects due to a higher

aggregation level can be used (Xu et al., 2017). Furthermore, consumption patterns in

the commercial and industrial context are more regular than highly individual and volatile

occupancy behaviour (EIA U.S. Government, 2013). Therefore, more and more recent

scientific literature is focusing on residential energy communities and forecasting models

in their context. However, this analysis also includes publications which involve forecast-

ing for individual households beyond the REC context (e.g. Lusis et al. (2017)). These

are just as relevant as findings for stand-alone households also bring interesting insights

about household load profiles in the REC context. Therefore, this section will be divided

in two parts. First, publications with forecast models on residential household level are

considered. Then, literature evaluating forecasting approaches on REC aggregation levels

is reviewed. Here, it is distinguished between di↵erent sizes of RECs, which are being

considered, ranging from a few to hundreds of participating households. However, most of
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2.2. State-of-the-Art: Energy Load Forecasting in the context of Renewable Energy
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the studies involve much bigger communities than the dataset on hand with 19 households,

which is going to be presented later in this study. In general, one should be aware of the big

di↵erences between forecasting on individual household and community aggregation level.

Due to high volatility and individual characteristics, predictions on household level are

much more challenging (Wijaya et al., 2015; Lusis et al., 2017). While older publications

are focusing mainly on higher aggregation levels, smart meter based analyses on household

level are currently becoming more topical. That is why several recent publications focus

on individual household load forecasting for short-term horizons (Jiang et al., 2021). The

most common predictor variables introduced in literature are historical load data collected

regularly by smart meters, weather and calendar information (e.g. Lusis et al. (2017);

Pirbazari et al. (2021)). However, certain studies (e.g. Rodrigues et al. (2022)) did not

include exogenous factors in the models and relied completely on historical load data.

2.2.1. Residential Household Level

Due to the increased challenges when forecasting volatile household loads, past studies

presented di↵erent tools to assist prediction models and gain more insights into driving

factors. For example, Humeau et al. (2013) proposed to cluster households according to

their energy consumption profiles by applying the k-Means algorithm on 24-dimensional

representations of each household. Each dimension stands for the overall average load of

the concerning household at the corresponding hour. This idea was further pursued by

Yildiz et al. (2018b) who also recommended to include a clustering step before forecast-

ing. By grouping households according to their standard deviation, the authors were able

to reduce the Root Mean Squared Percentage Error (RMSPE) per household by 9% on

average (Yildiz et al., 2018b).

Shortly afterwards, the same authors introduced “Cluster-Classify-Forecast” (CCF) as a

new approach which extends simple Smart Meter based Models (SMBD) by adding infor-

mation obtained from clustering and classifying daily energy consumption profiles within a

household. The increased model complexity was justified by better performance. Another

advantage of this approach is the insight into driving components and feature importance

for individual load profiles. (Yildiz et al., 2018a)

Dinesh et al. (2019) were performing graph spectral clustering on the very low aggregation

level of appliance signals, which were aggregated later to household or community level.

Apart from the positive e↵ects of pre-clustering, Yildiz et al. (2018b) found a considerable

impact of data resolution and the forecast horizon on the forecast performance. While

Yildiz et al. (2018b) reported the best results for one-hour-ahead forecasting, Lusis et al.

(2017) found lower errors for coarser forecast granularities. This is possible due to di↵erent

raw resolutions in the original dataset. Several studies included calendar information in

their models (e.g. Humeau et al. (2013); Yildiz et al. (2018b); Tits et al. (2020)). However,

Lusis et al. (2017) reported that the main predictors remain historical load and weather

data, as the e↵ect of calendar information included as dummy variables remains little.

Di↵ering from the publications presented before, Aurangzeb (2019) tested 8 di↵erent re-

5



6 2. Literature and Theory

gression models for single household energy consumption in the REC context without

clustering households beforehand. For models to learn the highly irregular and complex

(sometimes unpredictable) behaviour of single households, more complex non-linear mod-

els are necessary (Jiang et al., 2021). This suggestion was backed up by Aurangzeb (2019),

who concluded in his study that the non-linear Radial Basis Function (RBF) kernel delivers

the best results, compared to other regression models for individual households.

As the domain of Artificial Neuronal Networks (ANN) and Deep Learning (DL) is evolv-

ing fast, recent publications were applying these topical techniques in the household load

forecasting context (e.g. Jiang et al. (2021); Rodrigues et al. (2022)).

Jiang et al. (2021) used several recent DL architectures on household level. Compared to

other models, the latter seem to be more e�cient in capturing more uncertain and volatile

household load profiles. By combining Convolutional Neuronal Networks (CNN) and Long

Short-Term-Memory (LSTM) networks, not only regular consumption behaviour, but also

recent characteristics such as short-term abnormalities or shared behaviour patterns across

di↵erent households could be learned. (Jiang et al., 2021)

Rodrigues et al. (2022) trained ANNs with historical load data to predict load curves of

households several hours ahead. A special focus was given to model performance com-

parison between weekdays and weekend. The authors underlined that the demand di↵ers

according to the day of the week. Model performance was slightly worse for weekends.

Other studies took a more holistic approach and highlighted the importance to see individ-

ual households as part of RECs or micro-grids (e.g. Tits et al. (2020); Hou et al. (2021);

Gong et al. (2021)). In the following section, approaches on these higher aggregation levels

are considered.

2.2.2. Community Aggregation Level

A considerable amount of literature also made use of di↵erent clustering approaches on

community aggregation level (e.g. Wijaya et al. (2015); Flor et al. (2021); Hou et al.

(2021)).

Wijaya et al. (2015) combined the advantages of two aggregate forecasting scenarios into

an approach called Cluster-Based Aggregate Forecasting (CBAF). The study of Flor et

al. (2021) showed how energy behaviour patterns in nearby areas are connected and can

be organized into geographical zones to improve forecast performance in each sub-cluster.

Besides the classical k-Means algorithm, the Ordering Points To Identify Clustering Struc-

ture (OPTICS) algorithm was recently used for power consumption pattern recognition

(Hou et al., 2021).

While pattern recognition gets easier and more cyclical on higher aggregation levels, consid-

ering whole communities or ensembles of households poses new questions, like determining

the community size and respectively the aggregation level (Hou et al., 2021).

Recently, a number of researchers have sought to determine the adequate number of house-

holds included in a micro-grid to provide su�cient accurate results for Home Energy Man-

6
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agement (HEM). HEM enables scheduling future load needs to better allocate demand and

renewable energy o↵er. With respect to the Mean Absolute Error Percentage (MAPE),

Hou et al. (2021) determined 150 households as su�cient (MAPE below 10%) size. In the

recent study by Shaqour et al. (2022) this critical error of 10% was already achieved for an

aggregation size of 30 dwellings. A household microgrid meeting these requirements brings

advantages compared to single households: The aggregation and cooperation results in a

more flexible distribution of the residential electricity and better possibilities to meet the

demand e�ciently with renewable energies. Finally, this leads to better performance of

local energy management (Shaqour et al., 2022).

Previous studies have already highlighted the important e↵ects of REC characteristics (e.g.

community size) on the predictability (Tits et al., 2020). It is important to retain that

the performance of certain models is highly dependent on the underlying aggregation size

(Humeau et al., 2013). Especially for the more challenging lower aggregation levels, model

choice is a critical factor (Burg et al., 2021).

However, model choices only driven by quality metrics like the MAPE may be misleading.

In practice the added value (e.g. self-su�ciency, cost, carbon footprint) for the community

is most important. (Coignard et al., 2021)

Another challenge for RECs is HEM and the e�cient energy allocation for households and

communities. Gong et al. (2021) used long term load forecasting combined with HEM

to reduce consumption peaks and the total load consumption. This was done by load

shifting, to e�ciently control electric water heaters (EWH) and heating, ventilation, and

air-conditioning (HVAC) systems. The same holistic view also dominated the recent study

of Pirbazari et al. (2021), which compared solar output and community overall energy usage

prediction for 6 equal-sized household communities.

As in Section 2.2.1, recent literature focusing on community aggregation level also makes

use of the fast development of deep learning (e.g. (Pirbazari et al., 2021; Hou et al., 2021;

Shaqour et al., 2022)).

2.2.3. Summary

The two preceding sections showed similarities and di↵erences between the two perspectives

that can be taken when performing energy load forecasting in RECs. The most important

point might be the high volatility at household level, which is smoothed out with increasing

community aggregation size. Several di↵erent models were introduced in literature so far.

From classical models like Multiple Linear Regression (Humeau et al., 2013) or Regression

Trees (Lusis et al., 2017) over Support Vector Regression (e.g. Humeau et al. (2013);

Wijaya et al. (2015)) to highly complex DL architectures (e.g. Hou et al. (2021); Shaqour

et al. (2022)), models were tested in di↵erent scenarios.

In this thesis, the given dataset (Pullinger et al., 2021) is used to review existing findings

on energy load forecasting in the REC context, while also exploring new potential of pre-

7



8 2. Literature and Theory

clustering of smart meter data for forecast improvement.

An important step is the analysis of the 19 households of the dataset regarding consumer

profiles and consumption patterns. Part of the analysis is the application of clustering

algorithms to divide daily consumption profiles among all households into groups. In a

second step, prediction performance for these defined subgroups of households is evalu-

ated. The hypothesis is that a pre-grouping of the consumption profiles according to their

characteristics will support the models in their prediction.

8



3. Data Analysis and Methodology

3.1. Underlying Data

The given dataset for electricity and heating consumption of households originates from

the IDEAL Household Energy Dataset (Pullinger et al., 2021). This original dataset in-

cludes raw gas and electricity data for 255 UK households at sensor level. It was internally

modified and prepossessed at the Institute of Information Systems and Marketing (IISM).

Due to varying observation periods, 19 households, whose time series data overlapped for

one year, were chosen. This allowed to analyse a uniform and comparable observation pe-

riod from 15.06.2017 to 14.06.2018. During this process, outliers and missing values were

treated appropriately. Unnaturally high consumption peaks due to transmission problems

from the sensors were apportioned to previous time steps without recorded values. The

total consumption was una↵ected by this.

The energy consumption data used in this study is available in a comma-separated values

(CSV) file containing hourly electricity consumption data. The consumption was mea-

sured in kilowatt-hours (kWh) and covers a whole year of hourly observations. Each data

point refers to the consumption at the corresponding hour and date.

For further analysis, demographic variables, like the number of residents or occupied days

and nights of each housing unit, were drawn from the IDEAL dataset.

Weather data was taken from www.renewables.ninja, which provides several meteoro-

logical variables for Edinburgh (Scotland) in hourly resolution. Since all the selected

households are either directly from Edinburgh or the neighbouring Midlothian, the data

for Edinburgh was considered representative of the entire data set1. These weather vari-

ables were considered for the forecasting model and in the explanatory data analysis.

Moreover, calendar and temporal information were integrated via the Python datetime

module.

3.2. Data Understanding and Exploratory Data Analysis

This section presents first insights obtained from exploratory data analysis which are

relevant for the following research process. Furthermore, general patterns of energy use on

household level are analysed. Essentially, a distinction between three levels is made here:

1) households, 2) daily schedules and 3) months.

3.2.1. Households

As introduced in Section 2.2, occupancy behaviour and the resulting energy consumption

are highly volatile and individual. Figure 3.1 shows mean, overall and maximum electricity

consumption per household and confirms varying household summary statistics for the

1
The air-line distance between the two scottish cities is only 9.49 miles (www.distance.to).
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10 3. Data Analysis and Methodology

given dataset. For example, the mean hourly electricity consumption for the observation

period of one year is in the range of [0.11 kWh, 0.41 kWh] (Figure 3.1a). Naturally, the

same trend can be seen for mean and total electricity consumption. The latter also di↵ers

considerably. While household 5 only needs 988 kWh per year, households 2, 17 and 18

consume more than three times as much, with up to 3577 kWh per year (Figure 3.1b).

However, the biggest di↵erences can be observed in the maximum hourly peaks. This shows

that consumption for households, such as 11 and 17, is highly concentrated at individual

times of the day (Figure 3.1c). Moreover, Figure 3.1d summarizes several descriptive

statistics for each household in a boxplot. Significantly varying standard deviation of

the hourly electricity load can be observed. As introduced in the state-of-the-art (cf.

Section 2.2), this is one of the biggest challenges when forecasting residential electricity

loads. This aspect is also demonstrated by the individual statistical characteristics for

each household.

Nevertheless, the question arises how models still can be formed and how they can be

assisted in forecasting. This thesis aims to do so by clustering similar daily consumption

profiles. The approach is presented in Chapter 4.

(a) Hourly mean (b) Total consumption

(c) Max hourly consumption (d) Boxplot: Consumption per Household

Figure 3.1.: Di↵erent statistical consumption characteristics of the households

Literature recognizes a high correlation between future household energy usage and histor-

ical consumption data (e.g. Pirbazari et al. (2021)). This relationship could be confirmed

for the dataset on hand. In order to prove this, observations were divided into weeks, i.e.,

into time frames of 168 hours each. To compensate for the e↵ect of outstanding weeks,

the median of the electricity consumption at the respective hour of the week was selected

10



3.2. Data Understanding and Exploratory Data Analysis 11

(a) Aggregated weekly pattern (b) Autocorrelation in a week

Figure 3.2.: Median representation of every hour over 52 weeks for household one

over all 52 weeks of the year (Figure 3.2a).

Autocorrelation was used here to measure the correlation of a data point with the preceding

observation x hours before. Following the smoothed weekly representation, the previous

168 hours, i.e. the previous week, were taken into account. While the autocorrelation plot

for particular stand-alone weeks is highly dependent on the choice of week and household,

the mentioned median representation provides a clear and stable plot. Naturally, the exact

shape of the autocorrelation plot di↵ers slightly from household to household, depending

on the regularity of occupancy behaviour.

Figure 3.2b shows an example of the autocorrelation for household one of the dataset.

The course of the plot for this household can be considered representative for the other

households, since the general trend concerning autocorrelation is very similar. A periodic

trend with a consistently decreasing amplitude can clearly be observed. That means more

recent lagged data points are stronger correlated with each other. The blue line indicates

autocorrelation, whilst the horizontal lines represent the 95% (solid) and 99% (dashed)

confidence interval. In other words, within the horizontal lines the probability for the true

value of the given sample to lie in the marked interval is 95% respectively 99% (Cox &

Hinkley, 1979).

The positive autocorrelation posses its peak for the lags at hour� (24⇥X) (Figure 3.2b).

This indicates a high relevance of the consumption at the same hour on the previous days

for the future consumption. In other words, from the historical consumption, especially

24 hours before, variables can be created for the model with potentially high explanatory

power. Depending on the household, the lagged data points of the three to four previous

days are particularly highly correlated. However, one needs to be aware that the peaks are

no longer part of the confidence intervals. Nevertheless, within the intervals we can still

see relevant autocorrelation. Interestingly, also the 12-hour cycle may be relevant and is

considered when performing feature engineering for the models (Section 5.3).

3.2.2. Days and Daily Patterns

While Section 3.2.1 presented di↵erences between households at a higher level, this section

focuses on patterns within a day on household level. Two selected households are presented

11



12 3. Data Analysis and Methodology

as representatives. A classical electricity consumption pattern often has a medium morning

peak and a clear peak in the late afternoon and evening (e.g. Pirbazari et al. (2021)). This

can be explained by the regular routines of our everyday lives and periodic business hours.

The aggregated hourly electricity consumption across all 19 households of the dataset

confirmed this trend (Figure 3.2). A load peak was observed around 7 a.m. and in the

evening hours, with slightly lower consumption during the day. The trend could be even

more distinct for bigger datasets due to the smoothing and aggregation e↵ects mentioned

in Section 2.2. However, on individual household level one can see di↵ering daily profiles

depending on the individual routines of each household. Figure 3.3 shows boxplots for

two selected households demonstrating their daily electricity consumption patterns over a

year. On the left, the daily consumption of household 2 is shown, which can be interpreted

as a typical profile for a working household (Figure 3.3a). The timing of the morning and

evening peak is similar as in the aggregated version over all households. On the other

hand, Figure 3.3b demonstrates a completely di↵erent daily schedule. The first main peak

can be observed at 1 p.m. Examining all households, several individual schedules can be

observed. For example, the daily schedule of household six is shifted forward by a few

hours, with a morning peak at around 5 a.m. and the second peak at 4 p.m. (Figure A.3).

A component which is smoothed out by the aggregation done here, is that each household

itself can possess several daily schedules according to calendrical or other circumstances.

This aspect is taken into account later on in this study when clustering daily consumption

profiles across all households.

(a) Boxplot daily schedule, HH 02 (b) Boxplot daily schedule, HH 04

Figure 3.3.: Boxplots of daily hourly consumption for two selected household

3.2.3. Months

From looking at individual days in Section 3.2.2 and weeks in the course of autocorrelation

analysis in Section 3.2.1, the perspective is now changed to months. Literature often

documented seasonality for electricity consumption. For example, Lee et al. (2014) found

increased electricity consumption during Australia’s heating and cooling season. For the

given dataset once again the situation is di↵erent depending on the individual household.

In Figure 3.4a we see typical seasonality for household 17. During the winter months,

the hourly electricity consumption is slightly elevated. The underlying reasons cannot

be explained with the dataset on hand. However, one can imagine the use of electrical

12



3.3. Methodology Outline 13

(a) Boxplot consumption per month, HH 17 (b) Boxplot consumption per month, HH 18

Figure 3.4.: Boxplots of hourly consumption per month for two selected households

heating. Contrary to meteorological conditions in Australia, cooling is mostly not needed

during summer in Scotland. Therefore, a comparison of the results for these regions is

di�cult. Interestingly, other households, like household 18 in Figure 3.4b, show nearly

no seasonality at all with constant electricity consumption over all 12 months. A possible

reason could be the absence of electrical heating and instead the use of gas for heating

purposes. At the aggregation level across all households, marginally lower consumption

can be observed in the summer months (Figure A.4). However, there is no pronounced

seasonality. This initial analysis suggests that meteorological variables such as the current

temperature play a minor role in the prediction of electricity consumption for the present

dataset. If the heating consumption data is considered for comparison, there is clearly

more seasonality. The exploratory data analysis shows a typical ”U-shape” for nearly

all households (Figure A.2). In the cold months at the beginning and end of the year,

heating loads are significantly higher than in summer. However, the detailed analysis of

supplementary heating consumption data was beyond the scope of this thesis since the

focus was on electricity consumption data.

3.3. Methodology Outline

The detailed methodology is going to be described in the following two chapters Clustering

(Chapter 4) and Forecasting (Chapter 5) together with the associated results. However,

this section aims to provide the reader with a quick methodological overview for better

understanding. As introduced, one of the two addressed research questions was the fol-

lowing: Does and if how much does clustering improve the forecast performance for the

given dataset? Therefore, the research process consisted of two main parts. The first

important step was to cluster daily electricity load profiles over all 19 households. This

included a detailed analysis of the formed clusters together with socio-demographic infor-

mation about the households. The second important step, which built on the clustering,

was the application of forecast models to the di↵erent subgroups of daily profiles. Finally,

a comparison between the forecast performance of an unspecific model for all daily profiles

and a specific forecast model for each cluster respectively each type of day consumption

profile was done.

13



4. Clustering

4.1. Methodology: Possible Clustering Approaches

In literature, di↵erent approaches to perform clustering in the energy load forecasting con-

text exist. For example, Humeau et al. (2013) clustered households themselves to apply

forecasting to the formed subgroups of households. Yildiz et al. (2018a) clustered daily

profiles within a household and fitted a model for each cluster, that is several models

per household adapted to the specific cluster. In this thesis, clustering was applied in a

di↵erent setting with the aim to obtain more generalized models that may be helpful for

electricity forecasting in the REC context. Instead of considering days for each household

separately, the idea was to obtain typical daily profiles across all 19 households of the

dataset. The data was restructured to represent each of the 365 daily load profiles for each

of the 19 households. One day is characterized by 24 hourly electricity consumption values.

Consequently, the input for the clustering were 365⇥ 19 = 6935 daily profiles. Due to the

24 - dimensional representation of each day, the input data frame for the clustering al-

gorithms possesses 24 columns. The idea behind this approach is that typical daily con-

sumption profiles may appear repeatedly amongst di↵erent households, but on di↵erent

days. The goal of the clustering was to identify K daily profiles among all 6935 days of the

dataset and form subgroups of similar days regarding the electricity consumption profile.

4.2. Clustering of Daily Profiles

This section presents the tested clustering algorithms, a detailed analysis of the resulting

clusters and the subsequent hypothesis how the clustering results may be used to improve

forecast performance in Chapter 5.

4.2.1. Applied Clustering Algorithms

In total, three di↵erent clustering algorithms were applied to the mentioned representation

of the dataset. In the following, the results for each of them is briefly described. However,

the focus will be on the k-Means clustering algorithm, which proved to be the most suitable

for the given problem and was used several times in literature for the previously mentioned

similar scenarios (e.g. Humeau et al. (2013); Wijaya et al. (2015); Flor et al. (2021)). The

focus is on the application of the algorithms to the given problem and the analysis of

the results. Mathematical explanations of the algorithms exist numerous times in the

literature and are therefore not part of this work.

Data standardization with di↵erent scalers like the StandardScaler and the

MinMaxScaler was performed. The StandardScaler transforms the data to have mean

zero and unit variance, while the MinMaxScaler maps the features into the range [0,1] by

a linear transformation (Han et al., 2012, pp. 113 - 115). Furthermore, data reduction
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4.2. Clustering of Daily Profiles 15

with principal component analysis was tested. However, the application of the algorithms

on the original data representation delivered the best results. The plots for the resulted

cluster representations did not vary significantly for di↵erent pre-processing settings.

4.2.1.1. k-Means

The well-known and classical k-Means clustering algorithm (MacQueen, 1967) was applied

to the daily profile representation of the hourly electricity consumption data described in

Section 3.3. For the implementation in Python the machine learning library scikit-learn

was used (Pedregosa et al., 2011).

A critical point is the parameter K which determines the number of clusters in the data

and needs to be specified in advance. Even though guidelines, such as the elbow method

and the silhouette coe�cient exist, the choice of K for real data is typically never simple

and can be ambiguous. Therefore, James et al. (2021, pp. 530 - 532) suggest to try di↵er-

ent settings and look for the solution providing the best interpretation of the data. Note

that the main goal of clustering is revealing interesting aspects and structures of the data

for further implications. (James et al., 2021, pp. 516 - 532)

In this thesis, the goal was to expose information hidden in di↵erent daily load consump-

tion profiles to assist forecasting models. Following this argumentation, the silhouette

coe�cient but mainly the interpretation of the resulting clusters were considered for de-

termining the number of clusters K for the given dataset.

A big advantage of the k-Means algorithm over others, like for example the Density-Based

Spatial Clustering of Applications with Noise (DBSCAN), is the possibility to plot the

cluster centers vividly (c.f. Section 4.2.1.3). This is particularly interesting for the data

representation used here, as the 24-dimensional cluster centroids correspond to the 24

hours of a day. Figure 4.2 shows the clustering results for di↵erent values of K, ranging

from three to six, while Figure 4.1 presents the silhouette score for values of K ranging

from two to 12.

Figure 4.1.: Silhouette coe�cient for di↵erent numbers of K
of the k-Means
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16 4. Clustering

The silhouette coe�cient measures the clustering quality by the following equation:

s = (b�a)
max(a,b) . While a measures the distance of data points within a cluster, b indicates

distance between clusters. It is desirable to minimize intra-cluster distance a and maxi-

mize inter-cluster distance b at the same time. The score can take values in the interval of

[-1,1], where 1 is the best. A negative silhouette coe�cient indicates that data points were

assigned to wrong clusters. (Belyadi & Haghighat, 2021, pp. 125-168)

With a silhouette coe�cient of c = 0.2639 (K = 3), deviating significantly from zero and

not being negative, there is potential for clustering structures to be found. (Sari, 2016)

The plot of the silhouette coe�cient in Figure 4.1 demonstrates a strongly decreasing score

starting from K = 3 upwards. After a small increase for K = 6, the score remains mostly

constant. Therefore, a detailed analysis of the clustering results for K’s in the range [3,6]

was done. This allowed to make an informed decision and to have several decision criteria

for the optimal parameter choice. In the course of the analysis, K = 2 was not found

to provide a satisfactory solution to be interpreted despite the high silhouette coe�cient.

This demonstrates very well why it is important to include a domain-specific analysis of

the resulting clusters in addition to classical metrics such as the silhouette score. In the

course of this, it also became apparent that a higher number of clusters is not useful and

usually leads to an over-specification of the clusters. Part of this analysis can be seen in

Figure 4.2.

(a) K = 3 (b) K = 4

(c) K = 5 (d) K = 6

Figure 4.2.: Cluster centroids for di↵erent values of clusters K

Figure 4.2a shows the plot of the centroids for the configuration with K = 3 which deliv-
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4.2. Clustering of Daily Profiles 17

ered the most interpretable and coherent solution. In the remaining three subplots, it is

apparent how the new clusters formed as the number of clusters was increased. During

the transition from K = 3 to K = 4, the three existing clusters change only insignificantly.

More importantly, the new cluster does not add significantly more valuable information to

the plot. It is mainly a further specification of the second cluster, with slightly higher con-

sumption and a marginally earlier peak in the late afternoon. However, the general trend

with two peaks and their timing is the same. Hence, an expansion to K = 4 clusters could

not be justified either by the clearly declining silhouette score or by the domain-specific

interpretation of the centroids.

The transition to K = 5 clusters is shown in Figure 4.2c. On the one hand, the course

of the daily electricity consumption shows a clear distinction from the previous clusters

for the early morning hours: The first peak of more than 2 kWh happens very early and

concentrated at 5 a.m. On the other hand, a closer look reveals that 94.0% of the daily

profiles, within the newly formed fifth cluster, come from household 14. This means that

the new cluster was specifically adapted to this outstanding household. However, the aim

of clustering in this work was to map general daily consumption profiles across all house-

holds (e.g. for a REC) and not to make adjustments for individual households (cf. Section

4.1).

The next transition to K = 6 shows a splitting of the former cluster 3 (Figure 4.2d). In

cluster 6 (red), the original daily course is now di↵erentiated into two peaks, one in the late

morning and one in the afternoon. Again, this further breakdown is not desired as a daily

profile may consist of a combination of several peaks during the day. An overspecification

of the clusters to individual households is undesirable and therefore K = 6 was ruled out.

Following this argumentation, it is clear why K = 3 as number of clusters of daily profiles

was chosen. The remaining part of the thesis builds on these clustering results. In Section

4.2.2 both the clusters themselves and their composition are analysed in detail.

4.2.1.2. Time Series k-Means

The time series k-Means is a promising alternative to the classical k-Means algorithm, be-

cause it takes into account time series specific characteristics which are not considered in

the regular algorithm. An implementation of the algorithm is available in the tslearn time

series software library (Tavenard et al., 2020). The algorithm specified for time series data

comes with the possibility to use Dynamic Time Warping (DTW) as distance measure

instead of the well established euclidean distance.

DTW originates from speech recognition and is an advanced technique to compare time

series sequences to each other. Thanks to a non-linear warping it is possible to match and

compare sequences meaningful, even if they vary in speed, length or have di↵ering starting

points. (Müller, 2007)

The k-Means algorithm in combination with DTW was already used for clustering resi-

dential power load profiles together with spatial analysis by Flor et al. (2021). That is

why it was also considered in this study and compared to the classical k-Means approach

presented in Section 4.2.1.2. Figure 4.3 presents the centroids for the time series k-Means
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18 4. Clustering

Figure 4.3.: Centroids of the k-Means algorithm with DTW (K = 3)

with DTW as distance measure between daily load profiles.

At first glance, the courses of the clusters are far less clear and unambiguous than the re-

sults obtained for the classical k-Means algorithm. Nevertheless, some analogies between

the clusters can be identified. For better comparability, the same colours were used as in

the corresponding Figure 4.2a for clustering with the euclidean distance as distance mea-

sure. The first cluster (green) now possesses three peaks, that di↵er in magnitude. Cluster

two (blue) is at a similar level as before, but the peaks are partly more pronounced and

deviate somewhat in time. The greatest change can be seen for cluster 3 (yellow). Instead

of an increased consumption throughout the day, two peaks can be identified, the magni-

tude of the second being more than twice as large as before.

The silhouette scores for the clusters obtained by the DTW time series approach were gen-

erally significantly worse than in the first approach. For example, for K = 3 the silhouette

coe�cient for the time series k-Means was only c = 0.1157, whereas it was c = 0.2639

(Figure 4.1) in the initial setting. This was confirmed by a domain-specific analysis of the

clusters.

In general, the clusters formed in the initial setting provided a better interpretation of the

data. That is why an in-depth evaluation of the clusters was performed for the classical k-

Means results and the DTW setting was not further pursued. These results are presented

in Section 4.2.2.

4.2.1.3. DBSCAN

The DBSCAN clustering algorithm shall only be mentioned briefly for the sake of com-

pleteness, as it turned out to be not suitable for the given problem. The most critical

parameter of DBSCAN is epsilon, which determines the distance up to which two data

points are still considered to lie in the same neighbourhood. It needs to be adapted for each

dataset manually. In this study, several parameter configurations were tried, together with

the approach to use the k-Nearest neighbour algorithm to get a good order of magnitude

for the parameter epsilon (e.g. used by Toshniwal et al. (2020)). However, independently

of di↵erent configurations, the algorithm did not provide meaningful clusters which could
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4.2. Clustering of Daily Profiles 19

have been used for the described research process of the thesis.

DBSCAN is a density-based clustering algorithm. This type of clustering forms groups

out of the data by comparing the density of data points. Typically, observations in regions

with low density are labelled as outliers. (Sander, 2010)

This proved to be problematic in the context of electricity load forecasting. Dramatically

changing consumption upon di↵erent hours of the day or week are as normal as intensive

peaks followed by sudden consumption troughs at varying and hardly predictable time

(Hou et al., 2021). It does not make sense to declare these peak loads, which often are

part of a normal consumption profile, as outliers simply because they may appear in re-

gions with lower density. Unfortunately, for the dataset on hand the DBSCAN algorithm

detected a lot of unreal outliers and formed one cluster with high density for the rest of

the data points. Moreover, groups formed in addition to this main cluster contained only

very few observations (2 - 10 data points). As described in Section 3.1, appropriate pre-

processing was applied to the data so that outliers had already been eliminated previously.

Consequently, the results of DBSCAN could not further be used in this study.

4.2.2. Analysis of the Resulting Clusters

4.2.2.1. Domain-specific Description and Characteristics of each Cluster

In this section, a closer look at the three resulting clusters is taken and conclusions about

the corresponding household electricity consumption are made. Figure 4.2a presents

the daily profiles of the final clusters. The associated cluster proportions are shown in

Figure 4.4. With a percentage of 63.48%, cluster 2 has the highest number of daily pro-

files out of a total of 6935 days. Cluster 1 and cluster 3 share the remaining data points

relatively evenly with 18.73% and 17.79% of all data points, respectively.

Figure 4.4.: Cluster proportions for the k-Means algorithm with K = 3

Cluster 1 (green) has increased consumption early in the morning with a peak of slightly

over 0.4 kWh at 6 a.m. Throughout the day, the hourly electricity consumption is only
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(a) Household distribution cluster 1 (b) Day of the week distribution cluster 1

Figure 4.5.: Composition of Cluster 1, regarding households and days of the week

half as high, until it increases again significantly towards the afternoon. Around 7 p.m.,

there is a very strong peak with about 0.9 kWh, which levels o↵ again continuously until 11

p.m. Therefore, cluster 1 represents days when residents are home mainly in the morning

and evening. The evening in particular is very relevant. This may be the case for classical

workings days. Alternatively, this could also apply for days with general absence during

the day, for example, for free time activities.

This interpretation of cluster 1 is backed up by the day of the week distribution of the

cluster shown in Figure 4.5b. The numbers on the x-axis ranging from zero for Monday to

six for Sunday indicate the day of the week. As expected, Saturdays and Sundays have a

lower occurrence in the cluster compared to weekdays. It must be taken into account that

weekend days occur, with a proportion of 2/7 = 28.57%, less frequently in the dataset.

However, even then, with a share of 22.48% weekends are underrepresented in cluster 1

compared to an equal distribution.

Nevertheless, it should be noted that the conclusions made across all households are less

distinct than for individually selected households. This is logical, because the aim of

clustering across all households is to develop a good generalization over diverse usage

profiles. Furthermore, one must be aware that a weekend day does not directly imply the

presence of the occupants and vice versa.

Figure 4.5a shows the influence of single households for cluster 1. Households 2, 4, 14, and

18 are particularly strongly represented in the corresponding cluster. The interpretation

of cluster 1 is especially clear for households 2 and 14. This is explained together with

socio-demographic variables of the households in the course of the detailed analysis for

selected households in Section 4.2.2.2.

Cluster 2 (blue) has consistently low consumption with two very weak peaks at 7 a.m.

and 8 p.m. In general, the hourly consumption fluctuates around 0.2 kWh. That is on a

significantly lower level than for the other two clusters. Hence, cluster 2 can be seen as

representative for days with minimal electricity consumption, where the dwelling is not

occupied most of the day. When clustering daily profiles within a particular household

Yildiz et al. (2018b) documented a similar profile.

The weekday distribution in Figure 4.6b is significantly more balanced for cluster two

than for the other two clusters. This can be explained by the fact that days with low

attendance or consumption can occur equally on all days of the week. Similar applies to
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(a) Household distribution cluster 2 (b) Day of the week distribution cluster 2

Figure 4.6.: Composition of Cluster 2, regarding households and days of the week

the distribution across the individual households (Figure 4.6a). There are still individual

households, such as 5 or 9, which are particularly strongly represented. However, this is

less pronounced than in the remaining clusters. Each household is represented with at

least 47 days and more than half of them have at least 250 daily profiles in cluster 2.

Cluster 3 (yellow) shows a steady high consumption during the day with slight peaks in

the late morning at 9 a.m. and early evening at 4 p.m. Between 8 a.m. and 6 p.m.

the electricity load fluctuates around 0.6 kWh. Therefore, cluster 3 represents days when

residents are home a lot and also use more power-intensive applications for longer periods

of time. Moreover, both the daily total consumption and the median hourly consumption

are significantly higher. This can be seen together with other describing statistics in Table

4.1. The median hourly load is reported because it is far more robust to single hours with

intense peaks than the mean. Peak information is therefore provided trough the maximum

hourly load within a day for each cluster.

Cluster 1 Cluster 2 Cluster 3

Consumption Partly high Generally low High during day

Peaks
strong early morning,
very strong evening

minimal morning
and evening

light late morning
and early evening

Summed daily load [kWh] 8.9512 4.6970 11.0175
Median hourly load [kWh] 0.2586 0.1902 0.5259
Maximum hourly load [kWh] 0.9342 0.2850 0.7516
Minimum hourly load [kWh] 0.1537 0.1145 0.1832
Standard deviation of hourly load [kWh] 0.2307 0.0512 0.1819

Table 4.1.: Describing statistics for the three cluster centroids

For cluster 3, the analysis of the distribution across the days of the week is particularly

interesting. In Figure 4.7b one can see that weekend days are significantly more represented

than regular weekdays. If it is taken into account that weekdays occur considerably more

frequently in the dataset (5/7 = 0.7143), the e↵ect becomes even clearer. 40.92% of the

daily profiles in cluster 3 are weekends, which is clearly more than the 28.57% in the

unclustered full dataset.

The question could rise why weekdays were still found in cluster 3 and weekend days

in cluster 1. However, as described in previous sections, one needs to keep in mind the
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(a) Household distribution cluster 3 (b) Day of the week distribution cluster 3

Figure 4.7.: Composition of Cluster 3, regarding households and days of the week

high volatility and randomness of residential occupancy behaviour. It is not possible or

useful to characterize daily profiles solely based on the type of the day in the week. In

the following Section 4.2.2.2, further variables and components are used to investigate

the influence of household specific characteristics on the formed cluster. Nevertheless,

the analysis performed, especially for cluster 1 and cluster 3, confirmed a considerable

influence of the type of weekday on electricity load profiles.

In the day of the week distribution for the third and last cluster, a few households are

more strongly represented than others (Figure 4.7a). Again, as for households 2 and 14 in

cluster 1, the interpretation is particularly clear for these households. Section 4.2.2.2 will

dive deeper into this aspect.

4.2.2.2. Detailed Analysis for selected Households

This section further develops the insights gained from the top-level analysis of the three

clusters and their characteristics. It is investigated how the daily profiles of single house-

holds are distributed over the three clusters with their corresponding day of the week.

In a second step, socio-demographic variables, extracted from the original IDEAL data

representation (Pullinger et al., 2021), are included in the analysis. The goal is to evaluate

how these variables can justify and further explain the clustering results for individual

households.

For the analysis, households with extreme occupancy behaviour are of particular inter-

est. On the one hand, certain households in the dataset are nearly always occupied, on

the other this is barely the case for others. The degree of occupancy is measured by the

variables occupied days and occupied nights. The authors of the IDEAL dataset chose the

following wording for the survey:
”
In a typical week, how many days would you say your

home is occupied during the day; that is, with at least one person in it for most of the

day? “ (Pullinger et al., 2021). The same wording applies to the variable occupied nights.

It must be taken into account that the question is relatively vague and answers may be

dependent on the individual interpretation of residents. To check the survey results and

keep them up to date, a follow-up survey was done in September 2017. This is relevant

for the observation period considered in this study. While most of the residents stuck to

their original statement, some have drastically changed their indications concerning the

occupancy behaviour. This was taken into account in the analysis.
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Demographic variables Electricity consumption [kWh]

HH residents
occupied
days

occupied
nights

mean hourly total annual max hourly

1 2 1 7 0.24 2115.41 2.24
2 2 7 7 0.41 3576.66 4.91
3 3 4 7 0.27 2330.99 2.24
4 1 2 7 0.36 3148.90 4.51
5 2 7 7 0.11 987.99 1.75
6 3 4 7 0.26 2254.15 2.33
7 1 2 7 0.24 2144.06 2.52
8 4 4 7 0.27 2327.90 3.46
9 3 2 7 0.13 1110.64 3.22
10 2 3 7 0.27 2395.84 2.82
11 1 1 7 0.15 1328.44 8.57
12 2 2 7 0.29 2528.12 4.65
13 1 2 5 0.18 1606.97 4.96
14 3 2 7 0.39 3422.85 5.23
15 2 6 7 0.31 2721.05 3.64
16 1 1 7 0.21 1825.65 1.64
17 2 7 7 0.40 3523.32 6.61
18 3 7 7 0.41 3572.30 2.38
19 1 2 7 0.34 2977.92 3.35

Table 4.2.: Demographic variables and consumption statistics [kWh] per household

The dataset on hand with 19 households provides a good representation of di↵erent con-

sumer types. The number of residents ranges from one to four and di↵erent compositions

of the number of occupied days and nights can be observed (Table 4.2). Once again, it

must be clarified that the electricity consumption does not have to be directly dependent

on these two variables. More complex components, like consumption and sustainabil-

ity awareness or energy e�ciency of the dwelling and the used appliances, also play an

important role.

With over 3500 kWh of annual electricity consumption, households 17 and 18 were the

two largest consumers in the dataset. The residents stated that the accommodation unit

was occupied on 7 out of 7 days as well as nights. Since the consumption level at night

is significantly lower for all clusters, the e↵ect of occupied days certainly has a much

stronger impact on the electricity consumption. It is therefore logical that households

17 and 18 have particularly many days in cluster 3, which was characterized by high

consumption during the day. 51.8% of the days of household 17 and 59.2% of household

18 were assigned to this cluster (Figure 4.8). This is considerably more than for all other

households. However, it is logical that also days in the two other clusters exist. On the

one hand, not all occupied days, like for example home o�ce days, may lead to intensive

electricity usage during the day. On the other hand, there exist ’non-typical’ weeks where

residents may be less at home. Hence, the comparison to other households of the dataset,

where the proportion of days in cluster 3 is much lower, is important.
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(a) Household 17 (b) Household 18

Figure 4.8.: Cluster allocation for two households with high occupancy and consumption

It is also interesting to take a closer look at households 2 and 5 (Figure 4.9). Household

2 reported in the first survey, as did households 17 and 18, that the housing unit is

mostly occupied on all days. However, at only 16.2% the proportion of days in cluster 3

is significantly lower for this household (Figure 4.9a). While this may be simply due to a

di↵erent usage pattern with higher focus on the morning and evening, it certainly plays

a role that the residents changed their statement in the aforementioned follow-up survey.

According to the second statement of September 2017, the dwelling of household 2 was

only occupied 2/7 days, instead of 7/7 days (Pullinger et al., 2021).

(a) Household 2 (b) Household 14

Figure 4.9.: Cluster allocation for two households with high occupancy but low consump-
tion

Furthermore, for household 2, the day of the week seems to have a great influence on the

consumption profile. 83.0% of the days in cluster 1 are weekdays (Figure A.5a). With a

share of 81.4% weekend days, cluster 3 is dominated by Saturdays and Sundays (A.5b).

This aligns very well with the interpretation of the formed clusters made in Section 4.2.2.1.

Cluster 1 was interpreted as profile for days with high consumption in the morning and

evening, while cluster 3 as representative for days with continuous high consumption during

the day. For cluster 2 with low consumption, there is no particular tendency regarding

the time of the week. However, it is striking that it contains a particularly high number of

Fridays for household 2. This again demonstrates the strong tendency towards individual
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consumption profiles in residential electricity consumption.

Household 14 is another household that strongly justifies the cluster interpretation (Figure

4.9b). In cluster 1, 97.8% of the days are weekdays (Figure A.6a), in cluster 3, 72.8% of

the days are on the weekend (Figure A.6b).

A special case is household 5, which has all its 365 daily profiles in the low consumption

cluster 2 (Figure 4.6a). Given that the household is occupied daily according to the

survey, this may seem surprising at first. However, taking into account the total annual

electricity consumption, the clustering result becomes reasonable. Household 5 shows by

far the lowest hourly and total electricity consumption (Table 4.2). The very low electricity

demand could be explained, for example, by a particularly energy-e�cient lifestyle or

appliances.

Now that households with very high attendance have been considered, households with

more absence are assessed. Household 11 and 16 both indicated only 1 of 7 occupied

days during a typical week. This is clearly reflected in the cluster shares (Figure 4.10).

For both, a very high percentage of days were assigned to cluster 2. Since it represents

days with low consumption, the interpretation is again backed up here. Interestingly, for

household 11, the share of 87.1% for cluster 2, corresponds approximately to the share of

unoccupied days of 6/7 = 85.7% (Figure 4.10a). Moreover, 90% of the days in the ”High

during day” cluster (cf. Table 4.1) are actual weekends and 100% of the days were Fridays

or weekends (Figure A.7b). Household 16 showed even a slightly higher percentage of days

in the low consumption cluster (Figure 4.10b).

(a) Household 11 (b) Household 16

Figure 4.10.: Cluster allocation for two households with low occupancy

Another aspect that was included in the analysis is the influence of national holidays.

However, no significant di↵erence could be found compared to usual working days. For

most households, there was no deviation of the cluster shares compared to non-holidays.

Therefore, assumptions that households might either be absent due to travelling or be at

home more could not be confirmed.
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In this chapter, the obtained clustering results are combined with classical load forecasting

models. It is investigated, whether the type of clustering applied here improves the forecast

performance. The question is if the pre-grouping of the daily electricity consumption

profiles provides the models with su�cient additional information.

5.1. Forecast Methodology

Using the indices of the clustered daily profiles, the days could be divided into three sub-

groups. In addition, the composition of all unclustered days together was considered as

fourth dataset for comparison. Support Vector Regression (SVR) and the Random Forest

Regressor (RFR) were applied to all four constellations of the data.

For each of the four forecast settings the corresponding data was split into train, validation

and test set. The models were trained on 70% of the days. 10% were reserved for valida-

tion and hyperparameter tuning of the involved algorithms. This was done by means of a

grid search. Specifications to the tested parameters follow together with the reporting of

the results for the two models. The remaining 20% were used for testing and evaluation

of the models since it is important to test the model on data which has not been leaked

to it beforehand.

Two di↵erent split scenarios were tested. In the first one, every household was represented

in training, validation and test set with the corresponding percentage. This was not the

case for the second one, because the aligned households were consecutively split. The

second scenario delivered significantly better results and is therefore considered in this

study. Another strong argument for this approach is the better generalizing done by the

model. In this setting, the model was fitted on the days of the first households and tested

on households the model has not seen before. This prevented overfitting and resulted in a

generalized model with better performance.

While it is common to apply shu✏ing to the input data for classical machine learning

algorithms, the original order is often retained for time series data. This is particularly

relevant when using models where future predictions depend on past predictions, like in

Recurrent Neuronal Networks (RNN). However, algorithms like SVR and RFR do not have

such memory. Instead, the time series information of past consumption values was added

to the feature matrix by feature engineering (e.g. Table 5.1). Therefore, both approaches

can theoretically be applied to the present dataset. Zhang et al. (2018) documented that

random sampling can outperform consecutive splitting when less regularity in the residen-

tial usage patterns is present. Both options were tested for the daily and hourly forecast

scenario (cf. Section 5.3). Similar to the conclusions made by Zhang et al. (2018), for

the daily forecast, with less regularity, shu✏ing the observations outperformed consecu-

tive splitting. At hourly resolution, where temporal sequence plays a more important role,

consecutive splitting achieved slightly better results.
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Another aspect to consider, is the computational e�ciency of the algorithms. The time

complexity of Support Vector Machines, both for classification and for regression, increases

fast with the number of training vectors. In the worst case, it is O(n3), making its time

complexity cubic. (Ns, 2015)

In general, the prediction can be done for di↵erent time granularities. In this thesis,

forecast models for daily and hourly resolution were considered. When applying daily

forecasting with 6935 days, the cubic time complexity could be handled. However, in the

case of forecasting at hourly resolution, there were 6935⇥ 24 = 166440 observations in the

unclustered case. This quickly lead to enormous demands on the computing and storage

capacity. For this reason, the forecasting analysis at hourly resolution was limited to the

first 100 days for each household in the observation period. Consequently, the clustering

approach was applied again to this subset.

While making computations manageable without an external server, this constraint at the

same time served as yet another validation of the clustering results. Since for the subset

of the daily profiles the centroid curves di↵ered only slightly, the clustering structure was

confirmed once again and can be considered robust (Figure A.8). (Han et al., 2012, p. 532)

5.2. Evaluation Metrics

There are many metrics available to evaluate the prediction performance of a regression

problem. Since these set di↵erent weighting priorities, the choice of the right metric is

essential. Another important issue is scale dependence, which negatively a↵ects compara-

bility. Therefore, the additional consideration of relative metrics is important. Literature

on electricity load forecasting for higher aggregation levels often makes use of the MAPE

as performance metric (e.g. Shaqour et al. (2022)). However, when applied to data on a

low aggregation level, like hourly electricity consumption on residential household level,

values approaching zero are common. Equation 5.1 of the MAPE demonstrates why this

is problematic and can lead to unmeaningful high errors. At are the actual values and Ft

the forecasted ones.

MAPE =
100%

N

NX

t=1

|At � Ft

At
| (5.1)

As the total daily consumption is always su�ciently far enough from zero, there were no

problems for the daily forecast. However, for the hourly forecast, At in the denominator

can be very small and therefore cause the MAPE to be arbitrarily high. The same applies

to the RMSPE. Humeau et al. (2013) reported the same issues in the context of household

electricity load forecasting and used other relative metrics instead. In this thesis, the

Normalized Mean Absolute Error (NMAE) and the Normalized Root Mean Squared Error

(NRMSE) were considered. Following Yildiz et al. (2018a), the MAE (Equation 5.2)

and RMSE (Equation 5.3) were normalized with the mean of the actual values At of the

corresponding subgroup. This compensates for the fact that consumption in the individual

clusters was of significantly di↵erent magnitude. While cluster 2 was characterized by low
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electricity loads, consumption could take much higher values in cluster 3.

NMAE =
MAE

A
=

1
N

PN
t=1 |At � Ft|

A
(5.2)

NRMSE =
RMSE

A
=

q
1
N

PN
t=1 (At � Ft)

2

A
(5.3)

Following this argumentation, these two normalized performance metrics are appropriate

for the comparison of the di↵erent subgroups. Moreover, the results of the hourly and

daily forecast become more comparable.

5.3. Forecast Scenarios

This section presents the daily and hourly forecast scenario together with the obtained

results. To obtain electricity consumption at daily resolution, the hourly data was aggre-

gated to a daily representation by the following formula: Cd =
P24

i=1Chi (Zhang et al.,

2018). Chi represents the electricity consumption at hour i and Cd represents the total

daily electricity consumption of one day.

Following the prediction of the summed daily consumption, the model was applied to

hourly electricity consumption data. It should be noted that more detailed and finer pre-

dictions are generally more di�cult and involve greater errors than predictions for higher

granularities (Lusis et al. (2017)). Therefore, the comparison of the models for these two

data representations is particularly interesting.

5.3.1. Daily Forecast

The aggregation to the daily representation of the hourly electricity consumption data re-

sulted in a data frame with 365⇥ 19 = 6935 observations. Several features were generated

from the original time series. To include lagged variables, which play an essential role for

time series data, each household’s first 5 days were discarded. This resulted in the final

data frame with 6935 � (5 ⇥ 19) = 6840 observations (Table 5.1). In the first column

dayIndex Day 0 Day - 1 Day - 2 Day - 3 Day - 4 Day - 5 MeanTemp DayOfTheWeek Peak - 1 Peak - 2 Peak - 3 STD - 1 STD - 2 STD - 3 Household

6 6.59 6.75 8.55 6.41 7.08 9.34 0.13 6 0.86 1.26 0.65 0.18 0.31 0.16 1
7 6.02 6.59 6.75 8.55 6.41 7.08 4.76 7 0.99 0.86 1.26 0.24 0.18 0.31 1
8 5.17 6.02 6.59 6.75 8.55 6.41 5.06 1 0.70 0.99 0.86 0.16 0.24 0.18 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
6933 12.39 7.47 6.76 8.78 7.58 11.21 -0.04 6 1.63 0.44 1.55 0.31 0.09 0.36 19
6934 10.65 12.39 7.47 6.76 8.78 7.58 0.34 7 2.26 1.63 0.44 0.58 0.31 0.09 19
6935 9.51 10.65 12.39 7.47 6.76 8.78 2.04 1 1.31 2.26 1.63 0.34 0.58 0.31 19

Table 5.1.: Target and feature variables for the daily forecast

’Day 0’, the target variable to predict, is displayed. Several lagged time series features

were included in the feature matrix. The variables ’Day - X’ reflect the daily electricity

consumption of the past Xth day. This applies analogously to the standard deviation,

which was included for the last three days. The lagged variable ’Peak - X’ indicates the
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strength of the peak on the previous days and is intended to support the model in fore-

casting particularly high electricity demands.

Furthermore, the mean temperature of the last day was included as a meteorological vari-

able. This provided the model with information about the current temperature range.

However, air conditioning is not widely used in Scotland. The market research firm Mintel

documented that only 0.5% of houses and flats in the United Kingdom have an air con-

ditioning system (Leggett, 2006). As heating consumption was recorded separately in the

dataset, the temperature variable was not expected to have much predictive power.

A calendrical variable provided via the numbers zero to six information about the day of

the week. Moreover, the column ’Household’ integrated a label for each household.

Since the value range of the individual features di↵ers, standardization is indispensable

(Han et al., 2012, p. 532). For this purpose, the StandardScaler of sklearn was used to

transform the features to have mean zero and unit variance (Pedregosa et al., 2011).

Table 5.2 shows the results for the four di↵erent prediction scenarios using SVR. As intro-

duced in the methodology Section (5.1), the parameters were optimized with a grid search.

There, the RMSE was used as comparison metric for optimization.

C indicates the regularization strength. Larger values of C emphasize the minimization

of the total error and therefore lead to less regularized and generalized models. Epsilon

defines a tolerance above which a deviation of the prediction from the true value is penal-

ized. (Awad & Khanna, 2015, p. 67 - 72)

The intuition to epsilon can be seen clearly, when looking at the tuned parameters for each

of the four groups (Table 5.2). Since the consumption level in cluster 2 is generally lower,

a relatively low tolerance of 0.2 kWh was chosen. In contrast, for cluster 3, a significantly

higher tolerance of 2 kWh was found to deliver the best results. Together with the inter-

pretation of epsilon this can be seen as further validation for the clustering results. On

all four subgroups, the RBF kernel outperformed the linear and polynomial kernel. The

Support Vector Regression
Evaluation
metric

All days
unclustered

Cluster 1 Cluster 2 Cluster 3

C = 10,
eps = 1.1

C = 1,
eps = 1.3

C = 1,
eps = 0.2

C = 1,
eps = 2

RMSE 2.3317 1.8866 1.1276 2.8722
NRMSE 0.3633 0.2081 0.2378 0.2593
MAE 1.6234 1.4386 0.8825 1.9595
NMAE 0.2529 0.1587 0.1862 0.1769

Table 5.2.: SVR daily forecast results for the four forecasting scenarios

MAE and RMSE are not suitable for comparing the groups and should only be considered

within a group, taking into account the order of magnitude. Thus, cluster 3 with its high

consumption, had the highest MAE and RMSE. Cluster 2, on the other hand, showed less

than half the error for these two metrics. Again, this can be seen as a validation of the

clustering results as the algorithm succeeded to separate the days by the magnitude of the

electricity consumption.

Nevertheless, the MAE is worth to be considered due to its straightforward interpretation.
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It indicates how much predictions deviate on average from the actual values. For example,

for cluster 2, the predictions deviated on average 0.88 kWh from the actual daily load.

Figure 5.1.: E↵ect of clustering on the daily forecast performance of SVR measured by
NMAE and NRMSE

Now, the comparison of the individual groups using NMAE and NRMSE is particularly

relevant for the second research question considered in this thesis. The normalized error

is significantly lower for the three subsets formed by the pre-clustering. While Table 5.2

presents the actual metric scores, the improvement achieved through clustering the daily

profiles according to their consumption behaviour can be seen clearly in Figure 5.1. The

solid line represents the results for SVR, while the scores for RFR are shown by the dashed

one. Both models perform similarly and confirm a significant improvement for the daily

prediction by the pre-clustering step. To highlight this, an upper error bound for the

clustered case is indicated by the two dotted horizontal lines.

The figure also demonstrates a key di↵erence between the MAE and the RMSE. While the

MAE treats all magnitudes of errors equally, the RMSE penalizes large errors particularly

heavily by squaring them before averaging. This is a possible explanation why the NRMSE

increases for cluster 3, while the NMAE decreases.

Random Forest Regressor
Evaluation
metric

All days
unclustered

Cluster 1 Cluster 2 Cluster 3

depthmax = 20,
leafminSamples = 10

depthmax = 11,
leafminSamples = 15

depthmax = 20,
leafminSamples = 10

depthmax = 7,
leafminSamples = 10

RMSE 2.2936 1.9196 1.0909 2.9157
NRMSE 0.3574 0.2117 0.2301 0.2632
MAE 1.5940 1.4890 0.8615 1.9597
NMAE 0.2484 0.1643 0.1817 0.1769

Table 5.3.: RFR daily forecast results for the four forecasting scenarios

The tuned parameters of the RFR are reported together with the results in Table 5.3.
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Depthmax specifies the maximum depth the trees are allowed to have, while leafminSamples

determines the required amount of data points to create a leaf node (Pedregosa et al.,

2011).

Interestingly, for the unclustered case and for cluster 2 the RFR performed marginally

better, while SVR was the better choice for clusters 1 and 3. However, these di↵erences

are minimal and do not change the influence of the clustering on the forecast performance

displayed in Figure 5.1. As the analysis from Figure 3.2b already suggested in the course

of the exploratory data analysis, previous consumption values had the greatest predictive

power.

5.3.2. Hourly Forecast

The next step was to apply the two introduced predictive models to the hourly data

resolution. Due to the computational complexity addressed in Section 5.1, the hourly

forecast was applied with restriction to the first 100 days of the dataset. This corresponds

to 100⇥24⇥19 = 45600 hourly data points. As before, numerous time series features were

generated. To do so, the first 120 hours, respectively the first five days, of each household

were discarded. This resulted in a data frame with 45600 � (120 ⇥ 19) = 43320 hourly

observations. Consequently, the hourly index starts at the 121th hour on day six.

Table 5.4 shows the corresponding data frame1, including the features and the target.

hourIndex target lagMinus1 lagMinus2 lagMinus3 lagMinus12 lagMinus24 lagMinus48 lagMinus72 stdLast2hours stdLast3hours hourOfDay dayOfTheWeek currentTemp household

121 0.1299 0.1512 0.3649 0.5721 0.1330 0.2137 0.1137 0.1479 0.2370 0.2085 0.0 6.0 1.631 1.0
122 0.1253 0.1299 0.1512 0.3649 0.1305 0.1448 0.1230 0.1227 0.2753 0.2088 1.0 6.0 1.918 1.0
123 0.2470 0.1253 0.1299 0.1512 0.3116 0.2600 0.2427 0.1099 0.1862 0.2093 2.0 6.0 2.107 1.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
45598 0.3136 0.3813 0.5104 0.6312 0.1597 0.3110 0.4090 0.3858 0.4769 0.3840 21.0 2.0 5.125 19.0
45599 0.2071 0.3136 0.3813 0.5104 0.1597 0.1998 0.3484 0.3210 0.4519 0.3786 22.0 2.0 4.615 19.0
45600 0.1604 0.2071 0.3136 0.3813 0.2892 0.1582 0.2485 0.3080 0.4649 0.3762 23.0 2.0 4.456 19.0

Table 5.4.: Target and feature variables for the hourly forecast

The target variable to be predicted is the hourly electricity consumption. Moreover, several

lagged hourly electricity loads were included. The exploratory analysis suggested that

shortly preceding consumption values and the lags at the same hour of the previous days

could be particularly relevant. To also include the variation within the previous hours, the

standard deviation of the past two and three hours was included as a variable. It did not

prove useful to include hours further back in time.

Since the time of the day can have a significant impact on the electricity consumption at

hourly resolution, the variable ’Hour of Day’ was created. Regarding the weather, the

’Current Temperature’ was approximately represented by the temperature of the previous

hour, to avoid leaking unknown information into the model. The variable ’Household’

additionally indicates to which household the current hourly consumption belongs. Finally,

the corresponding ’Day of the Week’ (range 1 to 7) was added to each consumption value

as input information. However, it is assumed that the e↵ect of this variable is limited,

since the information about characteristics of individual days has already been considered

by the pre-grouping of the daily profiles.

1
Please note, that the hour index here starts at one for better readability. However, in Python indexing

conventionally starts at zero.
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For this scenario, the variables were as well standardized due to their di↵erent value ranges.

At the hourly data resolution, the MinMaxScaler proved to be the most suitable, since

the relative di↵erence between the individual data points is larger than at daily resolution.

The MinMaxScaler unifies the value range of all variables to [0,1]. (Pedregosa et al., 2011)

In general, the results are comparable for di↵erent scaling types. These were only minor

improvements as the last tuning.

Table 5.5 presents the error metrics for SVR at hourly electricity data resolution. As

already stated in the literature, the error increased significantly at hourly resolution, com-

pared to the daily forecast. At daily resolution, the aggregation e↵ect made the consump-

tion more predictable, while the highly fluctuating hourly consumption values were more

challenging for the models.

The parameters of the models were optimized using a Grid Search and adjusted to the

four subgroups. Again, the tuned parameters show that the clusters are composed di↵er-

ently. The tolerance epsilon was logically at a lower level for the hourly forecast due to

the much smaller magnitude of hourly consumption values compared to aggregated daily

loads. Moreover, the optimized value for epsilon is anew significantly higher for cluster 3

than for the other clusters.

Support Vector Regression
Evaluation
metric

All days
unclustered

Cluster 1 Cluster 2 Cluster 3

C = 10,
eps = 0.02

C = 10,
eps = 0.02

C = 1,
eps = 0.02

C = 10,
eps = 0.2

RMSE 0.2746 0.3058 0.1618 0.2920
NRMSE 0.6931 0.6446 0.6362 0.7451
MAE 0.1539 0.1961 0.0879 0.1960
NMAE 0.3885 0.4133 0.3456 0.5001

Table 5.5.: SVR hourly forecast results for the four forecasting scenarios

Random Forest Regressor
Evaluation
metric

All days
unclustered

Cluster 1 Cluster 2 Cluster 3

depthmax = 20,
leafminSamples = 10

depthmax = 20,
leafminSamples = 10

depthmax = 13,
leafminSamples = 15

depthmax = 7,
leafminSamples = 10

RMSE 0.2546 0.2947 0.1567 0.2429
NRMSE 0.6426 0.6212 0.6162 0.6197
MAE 0.1426 0.2049 0.0979 0.1532
NMAE 0.3598 0.4319 0.3850 0.3908

Table 5.6.: RFR hourly forecast results for the four forecasting scenarios

Analogue to this, Table 5.6 shows the RFR results of the hourly forecast. At hourly

resolution, the di↵erence between the two models was slightly higher. The NRMSE is at

a lower level for the RFR than for the SVR for all 4 settings. Particularly, the SVR had

problems with cluster 3, with its very high and variable daytime consumption. Even if

the di↵erence between the two models measured by the MAE is less clear, the RFR is

preferable at the hourly level.
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Figure 5.2.: E↵ect of clustering on the hourly forecast performance of SVR measured by
NMAE and NRMSE

Moreover, the error reducing-e↵ect observed at daily resolution was significantly less pro-

nounced. The NRMSE could be reduced by a few percentage points for all clusters by the

RFR (Figure 5.2). However, the MAE did not confirm this trend. Apparently, cluster-

ing across all daily profiles had a much stronger e↵ect on predicting daily consumption.

However, it must also be taken into account in this comparison that hourly electricity

consumption at household level is much more di�cult to predict.

That the performed clustering had a remarkable influence at hourly resolution, despite the

lower improvement, becomes apparent when taking a closer look at the feature importance

of the individual models (Figure 5.3). The bar plot shows the importance of each feature

considered for splitting in the RFR.

For classification problems with Random Forests, the concept of Gini importance is used

for determining the importance of each feature. The Gini index measures the resulting

impurity of a node after each split. In regression problems, this concept can be applied

using summed squares as the impurity measure. The importance of variable Xi thus cor-

responds to the summed reduction of the squared error that resulted from all splits made

with variable Xi. (Nembrini et al., 2018)

For the unclustered dataset and for cluster 2, the electricity consumption of the preced-

ing hour as well as the consumption 24 hours before are the strongest predictors. It is

comprehensible that the time of day has low feature importance, since for cluster 2 the

dependence of consumption on the time of day is only weak. For clusters 1 and 3, where

consumption profiles are strongly dependent on the daytime, the variable is the second,

respectively, the most important feature in the model. This confirms the course of the

centroids for the individual clusters displayed in Figure 4.2a.

The models were thus able to validate the divergent characteristics of the separated groups.

However, this has not led to the same improvement in forecast performance for hourly pre-

diction compared to daily prediction.
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(a) Unclustered (b) Cluster 1

(c) Cluster 2 (d) Cluster 3

Figure 5.3.: Feature importance in forecasting for each of the four subgroups

5.4. Conclusion and Comparison

For the aggregated daily consumption data, a significant reduction in the normalized errors

was achieved by clustering. This e↵ect could be confirmed by both, NRMSE and NMAE.

In the best case, the NRMSE was reduced from 0.3633 for the unclustered dataset, to

0.2081 for Cluster 1.

Another finding, was that the prediction of electricity consumption of days in cluster 3 was

more di�cult. As already confirmed in literature, high volatility and random fluctuations

during the day increase the error. Accordingly, this was even more pronounced for the

hourly resolution. Here, the NMAE for cluster 3 was higher than in the unclustered

case. Nevertheless, it can be seen as a success to identify and isolate these days, which

are particularly di�cult to predict in the course of the day from the data. Using the

RFR, even at the hourly resolution, the NRMSE could be slightly reduced. The feature

importance varies drastically depending on the subgroup at hourly resolution.
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6. Conclusion

6.1. Summary and Discussion

The objective of this work was to investigate the potential of clustering for improving

the prediction of household electricity loads. Accurate predictions of consumption for

the next hour or day are important when optimizing e�ciency in energy communities

and especially the HEMS used there. Compared to larger aggregation levels, individual

forecasts still have great potential for improvement. In this work, similar results presented

in literature were confirmed by showing that clustering positively a↵ects the prediction

quality for the dataset on hand. For daily resolution, a reduction of the NRMSE of up

to 42%1 could be achieved. This trend was significantly weaker for the hourly forecast.

There, the reduction of the NRMSE by clustering was at best 4.1%2. This confirmed the

great challenge of hourly forecasts for individual households which needs to be addressed

further in future work. Nevertheless, the significant improvement in prediction for daily

resolution may o↵er great potential for further development of energy community concepts

and is of particular interest for the HEMS.

To the best of the author’s knowledge, the approach of clustering daily profiles across

multiple households or an entire community is outstanding (cf. Section 4.1). Substantially,

three main daily profiles could be found as a result of the applied clustering. The detailed

analysis of the resulting clusters emphasized the high degree of individuality as well as the

influence of a wide range of demographic factors on electricity consumption patterns at

household level.

6.2. Future Work

There are some limitations in this thesis that could be addressed in future work. Since

the dataset studied included 19 households, it would be interesting to apply the used clus-

tering approach to a larger number of households. In this context, the influence of the

number of included daily profiles on the clustering quality could be investigated. However,

increased computing power would be required. This aspect also plays a role in the predic-

tion for hourly resolution. Due to computational limitations, the prediction for the hourly

resolution was limited to the first 100 days of the dataset. With external servers for com-

putation, these limitations could be resolved. An even further generalization could also be

achieved by extending the observation period beyond one year. In contrast, it would also

be interesting to examine how specific restrictions of the number of daily profiles a↵ect

the results.

Further, an integration of the heating consumption data of the dataset into the approach is

required. The seasonality is expected to be much higher than in the case of the examined

1
Comparing the unclustered full dataset with cluster 1, SVR (greatest improvement)

2
Comparing the unclustered full dataset with cluster 2, RFR (greatest improvement)
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electricity data. That means, a holistic integration of all types of energy consumption at

household level is recommended. With regard to the HEMS, a comparison of the load

forecast with the future generation from the local renewable energy capacities is highly

relevant. For this purpose, taking into account meteorological conditions, a model could

be created to predict these capacities for the Edinburgh region. Subsequently, it can be

analysed how likely the expected loads can be covered by local energy generation.

Mentioning the local conditions for Edinburgh, it is recommended to apply the presented

approach for households from di↵erent geographic regions. Seasonality and feature impor-

tance may vary depending on the local conditions. For example, Pirbazari et al. (2021)

found higher seasonality for an australian dataset.

With the challenges addressed, energy communities and load forecasting continue to o↵er

great research potential. It is worth investing in further research, as the concepts play a

crucial role for the inevitable energy transition.
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Appendix

A. Figures

Figure A.1.: Overview of hourly electricity consumption of all 19 households

Figure A.2.: Overview of hourly heating consumption of all 19 households
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A. Figures 39

Figure A.3.: Boxplot daily schedule, HH 06

Figure A.4.: Boxplot consumption per month, all HH
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40 7. Appendix

(a) Cluster 1 (b) Cluster 3

Figure A.5.: Day of the week distribution of household 2 for selected clusters

(a) Cluster 1 (b) Cluster 3

Figure A.6.: Day of the week distribution of household 14 for selected clusters

(a) Cluster 1 (b) Cluster 3

Figure A.7.: Day of the week distribution of household 11 for selected clusters

(a) Cluster centroids for all 365 days (b) Cluster centroids for the first 100 days

Figure A.8.: Comparison of cluster results for 100 days and all 365 days (K=3)
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