
https://bise-student.io

MASTER’S THESIS

Object-Centric Process
Constraints using Variable

Bindings
Publication Date: 2024-10-25

Author
Aaron KÜSTERS
Aachen, Germany
aaron.kuesters@rwth-aachen.de
0xc71e30529d01Fb81e87b6920B6c9ece6861916bA

Abstract

With increasing interest and availability of Object-Centric Event Data (OCED), the fo-
cus of process mining research is shifting towards object-centric techniques. OCED
removes the requirement of a single case notion, i.e., that all events only belong to ex-
actly one case. Thus, OCED can capture real-life processes much more accurately. In
this thesis, we introduce a declarative querying and constraint approach for OCED,
focusing specifically on very high expressiveness while still allowing for efficient ex-
ecution in practice. We first present and formalize a way to formulate nested queries
of combinations of objects and events, so-called variable bindings. In contrast to prior
work, our approach allows for querying combinations of multiple objects and events
of any types. For example, also permitting queries for two orders placed by the same
customer, one placed after the other. Constraints are presented as an extension to the
querying approach, additionally specifying for each queried binding if it should be
considered...

Keywords: process mining, machine learning, data science

Submission Date: 2024-10-24
Submission Contract: 0xC20149ca5623c29c0B0bcB0B455AeF44585Db2cC

https://bise-student.io

This work was submitted to:

Chair of Process and Data Science (PADS - Informatik 9), RWTH Aachen University

Object-Centric Process Constraints using
Variable Bindings

Master’s Thesis

Author: Aaron Küsters

Student ID: 395258

Supervisor: Prof. Dr. Wil van der Aalst

Examiners: Prof. Dr. Wil van der Aalst
Prof. Dr. Stefan Decker

Registration Date: 2024-04-22

Submission Date: 2024-09-11

Abstract

With increasing interest and availability of Object-Centric Event Data (OCED), the focus of pro-
cess mining research is shifting towards object-centric techniques. OCED removes the require-
ment of a single case notion, i.e., that all events only belong to exactly once case. Thus, OCED can
capture real-life processesmuchmore accurately. In this thesis, we introduce a declarative query-
ing and constraint approach for OCED, focusing specifically on very high expressiveness while
still allowing for efficient execution in practice. We first present and formalize a way to formu-
late nested queries of combinations of objects and events, so-called variable bindings. In contrast
to prior work, our approach allows for querying combinations of multiple objects and events of
any types. For example, also permitting queries for two orders placed by the same customer,
one placed after the other. Constraints are presented as an extension to the querying approach,
additionally specifying for each queried binding if it should be considered satisfied or violated.
We introduce a visual notation for the queries and constraints of our approach and present a
supporting tool implementation. Apart from the approach formalization, we also describe how
the proposed types of declarative queries and constraints can be efficiently algorithmically eval-
uated on input OCED. Additionally, we outline how some types of constraints, which are very
relevant for real-life processes, can be discovered automatically based on input OCED. Finally, we
also evaluate the presented query and constraint approach by showcasing example constraints,
demonstrating the high expressiveness and convenient visual representation of simple and com-
plex constraints. Moreover, we explore the scalability and runtime performance of our approach
implementation, showing excellent performance even for large real-life datasets with more than
one million events.

ii

Contents

Abstract ii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Research Questions . 4

1.4 Research Goals . 4

1.5 Contributions . 5

1.6 Thesis Structure . 5

2 Related Work 6

2.1 Traditional Declarative Process Models . 6

2.1.1 DECLARE . 6

2.1.2 DCR Graphs . 8

2.1.3 Understandability of Declarative Models 9

2.2 Process Querying . 10

2.3 Object-Centric Process Constraints . 11

2.3.1 OCBC . 12

2.3.2 OCCG . 13

2.3.3 OCCM . 13

2.4 Process Filtering . 14

2.5 Discussion . 15

3 Preliminaries 16

3.1 Basics . 16

3.2 Universes . 18

iii

3.3 Object-Centric Event Data (OCED) . 18

4 Process Queries and Constraints using Variable Bindings 21

4.1 Bindings and Binding Predicates . 23

4.2 Nested Querying of Bindings using Binding Boxes 27

4.3 Process Constraints using Variable Bindings . 34

4.4 Efficiently Evaluating Binding Queries for OCED 40

4.4.1 Recursive Binding Query Algorithm . 40

4.4.2 Expanding Bindings . 41

4.5 Discovering Constraints from OCED . 46

4.5.1 Discovering Count Constraints . 47

4.5.2 Discovering Eventually-Follows Constraints 49

4.5.3 Discovering Complex Constraints . 50

4.6 Extensions . 54

4.6.1 Further Increasing Predicate Expressiveness 55

4.6.2 General Binding Annotations . 58

5 Implementation 60

5.1 Overview and Architecture . 60

5.2 Execution Engine . 61

5.3 User Interface . 63

6 Evaluation 68

6.1 Experimental Setup . 68

6.1.1 Datasets . 68

6.1.2 Hardware . 69

6.2 Qualitative Analysis . 70

6.2.1 Order Management . 71

6.2.2 BPI Challenge 2017 OCED . 76

6.3 Performance Analysis . 79

6.3.1 Query & Constraint Scenarios . 79

6.3.2 Scalability for Complex Constraints . 80

6.4 Threats to Validity . 83

iv

7 Discussion 84

7.1 Scalability Limitations . 84

7.2 Why not SQL? . 85

8 Conclusion 88

Bibliography 94

Acknowledgements 95

v

vi

Chapter 1

Introduction

Process mining aims to provide insights about processes based on event data, i.e., recorded pro-
cess execution records. Most commonly, business processes are analyzed. In larger organiza-
tions, event data is often recorded by software systems assisting in the real-life process execution,
for instance ERP systems. Traditionally, most of the data is considered in a flat format, where
events are associated with exactly one case. However, recently, research and industry started
to focus on a more flexible data model: Object-Centric Event Data (OCED). In OCED, multiple
objects are considered and events can be associated with multiple objects of the same type. The
flexibility of OCED allows it to represent real-life processes much more accurately than previous,
flat event data [1]. Depending on the application area, additional concepts, like relationships be-
tween objects or other event and object attributes can be supported. The OCEL 2.0 specification
aims to standardize a reference file format for such object-centric data [2]. In the last few years,
more and more Object-Centric Process Mining (OCPM) techniques based on OCED have been
proposed [3]. These techniques allow analyzing process data without flattening it into a tradi-
tional format, like classical event logs. In particular, the problems of Convergence, Divergence,
and Deficiency as described in [1, 4] are circumvented.

With an increase in interest and availability of OCED, many process mining techniques have
been extended to the object-centric realm. For instance, [5] describes the discovery of an object-
centric variant of Petri nets based on input OCED or [6] presents constrain-based conformance
checking for OCED. Yet, many of such OCPM adaptations of existing techniques limit their ex-
pressiveness and complexity by only combining traditional, flat constructs across multiple object
types, without actually connecting them. For instance, prior work on constraints, like [6], al-
lows considering multiple constraint constructs involving only one object type (e.g., constraints
like “there should be exactly one pay order event per orders object”), across multiple object
types (e.g., orders, items, …). However, these constraint parts are not combined. Thus, they
cannot express advanced constraints involving more than two object types or consider multiple
instances of the same type. As such, many of the previously presented object-centric process
mining approaches can be categorized as being primarilymulti-object techniques instead of fully
object-centric. This also offers some advantages, as it allows transferring a broad set of previ-
ously presented approaches to the object-centric setting, without increasing the complexity of
the approach. Still, multi-object approaches do not leverage the full potential and flexibility of
the OCED data model.

In this thesis, we aim to take a different direction. We present an object-centric query and con-

1

Chapter 1. Introduction

straint approach, focusing on the full flexibility and expressiveness of OCED. The instances of
an OCED are objects and events. Our querying approach allows specifying names and types for
the different objects and events that should be bound as well as declarative predicates, which
specify in what relationships the queried instances should be. Other filters, for example on in-
stance attributes (e.g., an order object’s price), can also be added. Thus, our approach uses the
full flexibility and structure of OCED, allowing queries and constraints involving any number of
objects or events of arbitrary types.

Next, we motivate the need for expressive object-centric queries and constraints, and the advan-
tage of an easy-to-use visual and declarative approach.

1.1 Motivation

In organizations, process execution data contain valuable insights that are often not leveraged to
their full extent. Allowing stakeholders to identify and query interesting scenarios enables or-
ganizations to get an overview of their current situation, as well as further use the query results
for advanced analysis. In particular, such analysis possibilities are crucial for real-life improve-
ments of the process. An especially intriguing analyzation facet lays in identifying undesired
behavior in the process. Undesired behavior can have various shapes. Consider a procurement
process, for example, where sometimes invoices are paid more than once, imposing significant
costs to an organization either due to excess work or because the lost funds are never recov-
ered. Or consider an order management process, for instance, where failing to send a payment
reminder to customers with overdue payments is clearly undesirable and has real-life negative
consequences. Undesired behavior can also be more complex, for instance when a customer in
an order management process places two orders after each other, but receives confirmations in
the opposite order, causing confusion.

For real-life adoption, it is especially important to allow stakeholders and analysts to design such
queries for interesting scenarios themselves. Thus, approaches that require advanced technical
skills, like SQL or other general-purpose solutions, cannot be used. In particular, to be usable
also for non-technical users, a graphical representation of the querying language, as well as a
tool with a user interface for modeling and executing queries, are integral.

Most prior work on querying process instances and defining constraints is focused on flat event
data. However, as demonstrated in [4], OCED can represent real-life business process much
better than traditional, flat event logs. Moreover, OCED is much closer to the execution data
recorded in the databases of large ERP systems. In the context of querying and constraints,
the flexible data model of OCED enables large leaps in expressiveness, for instance formulating
constraints across instances of different objects and event types. However, this flexibility also
introduces more complexity: Previously, with a single case notion, it was clear what constraints
like “There should be exactly one pay order event” or “If three failed delivery events are
recorded, a cancel shipment event should occur afterwards” expressed. For object-centric
data, it is unclear what events related to which objects are meant. Most of the object-centric
query and constraint approaches presented so far are still based on implicit case notions. In these
approaches, the case notions are just considered to be more flexible, with the option to choose
different object types for the case notion for different constraints. As such, these techniques are
best described as multi-object instead of fully object-centric.

For instance, consider the following textual constraint formulation for an order management

2

Chapter 1. Introduction

process: “An order should be fully delivered within 2 weeks of order placement, unless an item
of the order is out of stock.” This constraint is not representable in previously proposed constraint
approaches, even multi-objects ones, as it involves querying and connecting events and objects
through different object types. For instance, it can be assumed that the package delivered
event is only associated with objects of type packages, which are never associated with place
order events. In our approach, this constraint can be expressed through nested querying and is
presented visually in Figure 1.1.

A

Quick Deliveries

Out Of Stock Items

B

Object Variables
 o1: orders

Event Variables
 e1: place order

Filters

 o1 e1

Constraints

OR�A,B�

2000

2.15%
43

Object Variables
 o2: items
 o3: packages

Event Variables

Filters

 o1 o2

 o3 o2

Constraints

|Quick Deliveries| � 1

7659

12.64%
968

Object Variables

Event Variables
 e2: package delivered

Filters

 o3 e2

 e1 e2 0 - 2w

Constraints

6691
Object Variables
 o2: items

Event Variables
 e2: item out of stock

Filters

 o1 o2

 o2 e2

Constraints

1544

Object Variables

Event Variables

Filters

Constraints

|Out Of Stock Items| � 1

2000

45.95%
919

Query one object and one event, named "o1" and "e1"
and of types "order" and "place order", respectively

Filter predicate for only querying instances of o1 and e1
that are in an event-to-object relationship

Child nodes represent nested querying, where the
nested query results are named "A" and "B"Constraint which is satis�ed if A or B (i.e., the results of the child nodes)

are satis�ed for all child bindings related to the same o1 and e1

Filter predicate only querying e2 instantiations
which occur after the event e1

Filter predicate for only querying instances of o2 that
are in an object-to-object relationship with o1

Constraint which is satis�ed if there
 is at least one child binding for the nested

query named "Out of Stock Items" for a given
input binding (i.e., combination of o1 and e1)

In 2.15% (43) of the 2000 considered bindings of
o1 and e1 the constraint of this node is violated

Figure 1.1: A visualized constraint in our approach, consisting of five nodes, which are colored
to indicate how often they are violated for queried bindings. Annotations are included to explain
the different components of the constraint. In the top node, orders objects, named o1, together
with their corresponding place order event (e1), are queried. Additionally, it contains an
OR-constraint, which renders the root node satisfied exactly for those o1 and e1 combinations,
where one of the direct child nodes is satisfied. The root node is violated for 2.15% of the 2000
queried combinations of o1 and e1. The first node of the left child tree is satisfied for a given
placed order (i.e., combination of o1 and e1), if all items (o2) in the order o1 and corresponding
packages (o3) have exactly one result in the nested query, named Quick Deliveries. This
nested query queries all package delivered events related to the package o3, which occur
within 2 weeks after e1. Similarly, the first node of the right child tree is satisfied if there is at
least one result in its subquery, named Out of Stock Items.

Next, we will present the problem statement, research questions and goals as well as contribu-
tions of this thesis and outline the remaining thesis structure.

3

Chapter 1. Introduction

1.2 Problem Statement

Extracting insights from business process executions is challenging, especially when consider-
ing the added complexity that object-centric event data can model. Identifying interesting or
problematic process instances, i.e., combinations of objects and events, based on queries and
constraints is especially valuable for organizations. There is also a need for more expressive
queries and constraints, leveraging the full flexibility of object-centric event data, to overcome
the limitations of previously proposed multi-object approaches. Furthermore, it is important to
also allow stakeholders not familiar with programming to easily design and execute queries and
constraints.

1.3 Research Questions

In this thesis, we pose and subsequently address the following research questions:

RQ1 What are types of queries or constraints not expressible in previously suggested graphical
query or constraint approaches?

RQ2 What are exploitable connections or similarities between queries and constraints for OCED?

RQ3 How to increase expressiveness, while still allowing for easy graphical modeling of con-
straints and queries for OCED?

RQ4 How to achieve good performance for executing queries and checking constraints even for
larger event data, while maintaining high expressiveness?

RQ5 How can (a limited subset of) constraints automatically be discovered based on input
OCED?

1.4 Research Goals

To answer these research questions, we identify the following research goals:

RG1 Conduct a literature review of traditional and object-centric querying and constraints, with
a focus on the expressiveness of the proposed approaches.

RG2 Analyze the textual formulation for example constraints and identify or propose general
patterns.

RG3 Conceptualize and formalize an expressive object-centric querying and constraint approach.

RG4 Develop an algorithm for efficient evaluation of the presented (declarative) query approach.

RG5 Implementation of a graphical tool supporting the proposed query and constraint ap-
proach, focusing on performance and usability.

RG6 Design and implement a basic discovery algorithm for specific types of constraints.

RG7 Evaluation of the implemented approach, both regarding runtime performance and expres-
siveness of the possible constraints and queries.

4

Chapter 1. Introduction

1.5 Contributions

Themain contribution of this thesis is the proposed object-centric query and constraint approach
based on the concept of variable bindings. Additionally, we contribute the implementation of the
full-stack software tool OCPQ (Object-Centric Process Querying), featuring an intuitive graphi-
cal user interface for designing constraints and queries as well as a high-performance execution
engine backend for computing the results of queries. This tool implementation not only demon-
strates the feasibility of the approach, but also makes it easy to apply the presented approach in
practice on real data.

In the following, we present a more detailed list of our contributions as part of this thesis:

CT1 An overview of related approaches and literature regarding traditional and object-centric
querying and constraint models.

CT2 A conceptualization and formal definition of an object-centric nested querying approach
with the possibility to model complex queries and constraints.

CT3 Algorithms that allow for efficient evaluation of the declarative queries formulated in our
approach.

CT4 Theuser-friendly toolOCPQ for designing and evaluating queries and constraints, focusing
on performance with the option to discover certain types of constraints automatically.

CT5 Evaluation of the proposed approach through the implemented tool OCPQ, investigating
runtime performance and scalability as well as expressiveness.

CT6 Several upstream contributions to the process mining software landscape, in particular
adding OCEL 2.0 data models, XML, and JSON importers to the Rust4PM project1.

1.6 Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2, we first present and discuss
related work on process querying and (declarative) process constraints. We additionally describe
their limitations, especially concerning their expressiveness. Next, in Chapter 3, we introduce
key concepts and definitions used throughout this thesis. Then, in Chapter 4, we present our
main approach for object-centric queries and constraints. Additionally, this chapter contains
descriptions of how the proposed declarative query formulations can be evaluated efficiently
algorithmically. Furthermore, we also describe how certain types of constraints can be automat-
ically mined from input data and sketch extensions for our presented approach. In Chapter 5,
we give an overview of our implementation and provide details about the OCPQ tool, consisting
of the execution engine backend and the graphical constraint editor frontend. We evaluate our
approach through the implemented tool in Chapter 6, covering both runtime performance and a
qualitative analysis using example queries and constraints. In Chapter 7, we discuss the design
decisions we made for our method and implementation, as well as possible limitations. Finally,
we conclude this thesis in Chapter 8 and give a brief outlook into interesting areas for future
work.

1https://github.com/aarkue/rust4pm

5

https://github.com/aarkue/rust4pm

Chapter 2

Related Work

In this chapter, we discuss relatedwork on the topics of process querying and process constraints.
As such, this chapter addresses RQ1 by providing RG1 and encompassing the corresponding
contribution CT1 of a literature overview over query and constraint approaches.

This chapter is structured as follows. We first examine prior work presenting declarative and
constraint-based approaches for classical, flat (i.e., not object-centric) event data. Subsequently,
we also explore process querying, as a related subject to our approach. Afterwards, we zoom in on
constraint approaches that support object-centric event data. Finally, we shortly discuss process
filtering and sketch how the introduced concepts, like declarative process models, constraints,
querying, and filtering are fundamentally related.

2.1 Traditional Declarative Process Models

Most process models and languages, like Petri nets or BPMN, are imperative. They describe the
control flow of how a process works, just like imperative programming involves a sequence of
steps, specifying, what to do, in which order. In contrast, a declarative process model approach
describeswhat behavior should be allowed or disallowed, just like declarative programming spec-
ifies, what a program should compute, without specifying explicit steps of how to do so.

Process constraints specify what process behavior should not be allowed, forming the very core
of declarative process modeling. As such, they are a good fit for modeling processes with large
flexibility and little clear structure [7]. For instance, knowledge-intensive processes, like those in
health care or finance, commonly exhibit such loose structure, allowing workers a high amount
of flexibility in how to handle process cases [7].

2.1.1 DECLARE

In 2006, Pesic and van der Aalst presentedConDec, a declarative processmodel approach based on
constraints rooted in Linear Temporal Logic (LTL) [8]. Because LTL expressions can be complex
and difficult to understand quickly, the authors used parameterized constraint templates as an
intermediate representation for constraints. For instance, a response constraint, represented by a
decorated arc between two activities A and B, corresponds to the LTL expression �(A → ♦B),
expressing that events of typeA should be eventually followed by events of type B [8]. The visual
representation of the response constraint is shown in Figure 2.1. The same authors also created

6

Chapter 2. Related Work

DecSerFlow, a sister language of ConDec, focusing on service flows, and using the same concepts
and tool implementation [9]. In 2007, Pesic et al. presented DECLARE, a workflow management
system prototype using constraint-based process modeling [10]. While DecSerFlow and ConDec
can be understood as specific languages created using the DECLARE framework, DECLARE itself
allows for the definition of own custom languages (containing constraint templates) rooted in
LTL [10]. This includes specifying the visual representation of constraint templates, with the goal
of also allowing users without experience in LTL to work with DECLARE tools [8, 10].

Figure 2.1: A response constraint between activities A and B in DECLARE (cf. [8–10]).

DECLARE consists of three parts: 1. Designer for modeling, 2. Framework for process enactment,
and 3. Worklist for process execution by (multiple) workers [10]. To support the execution and
enactment, LTL formulas are internally converted to finite-words automata. This also enables
detecting whether a violated constraint is temporarily or permanently violated (e.g., if the au-
tomaton is in a sink state the violation is permanent) [10]. The Worklist view of DECLARE then
highlights the violation status of a constraint and also disables actions which are forbidden by
constraints.

Discovering DECLARE Constraints

DecMiner In [11], the authors proposed an approach for discovering DECLARE (DecSerFlow)
constraints using Inductive Logic Programming (ILP). ILP is concerned with inducing a set of
logical rules, generalized from training examples [11, 12]. The algorithm requires labeled event
logs, i.e., a set of positive and negative traces, exhibiting allowed or disallowed behavior, respec-
tively. These positively or negatively labeled traces are considered positive or negative inter-
pretations in the context of ILP. Constraint clauses are added or refined, such that they rule out
negative interpretations while still permitting (most of) the positive interpretations. The gener-
ated constraints are expressed in the SCIFF language, where, for instance, H(place order, T) →
E(pay order, T1) ∧ T1 > T expresses that, for any given case, an event with the place order
activity at timestamp T is eventually followed by an event with the pay order activity at a later
timestamp T1. Note, that the variable T is implicitly universally qualified (∀), while T1 is im-
plicitly existentially qualified (∃) [11]. Finally, the constraints are translated into DecSerFlow
constraints.

Declare Miner In 2010, Maggi et al. published a discovery algorithm for mining DECLARE
models from event logs [13]. The algorithm uses a simple brute-force approach: Given a set
of DECLARE templates to use, all possible DECLARE constraints following these templates are
generated and translated to LTL [13]. Subsequently, the LTL constraints are checked for an his-
torical event log. If an LTL constraint is not satisfied, the corresponding DECLARE constraint
is removed. The algorithm features some parameters, allowing to ignore infrequent activities
for generating constraints and allowing a certain percentage of traces in the historical event log
to violate the constraint without filtering it out. Later, in 2012, some of the same authors im-
proved on this brute-force discovery approach by reducing the considered search space using an
Apriori algorithm1 [15]. This approach not only reduces the execution time drastically and thus

1Inspired by the classic Apriori algorithm for mining association rules by Agrawal and Srikant published in [14].

7

Chapter 2. Related Work

enables mining DECLARE constraints for larger events logs, but also mitigates the discovery of
unwanted constraints (e.g., constraints that are trivially true or implied by other constraints) [15].
The algorithm works like this: First, construct frequent item sets of activities using an Apriori al-
gorithm. Next, for each DECLARE constraint template of size k, generate possible instantiations
using frequent item sets of size k (and smaller frequent item sets while repeating some activities).
The number of generated instantiations is expected to be much smaller than in the primitive ap-
proach presented in [13]. Finally, the set of instantiations is additionally filtered based on classic
association rule metrics, adopted for DECLARE constraints (e.g., Support, Confidence, Interest
Factor), and corresponding threshold parameters. In 2018, Maggi et al. extended this approach,
focusing on faster execution time and parallelization [16].

MINERful In [17], Di Ciccio andMecella presented theMINERful algorithm in detail. It works
in two phases: First, statistical information is extracted from the event log to build certain ab-
stractions in the form of knowledge bases. For instance, the knowledge base contains counts
in how many traces an activity occurs n ∈ N0 times, or counts how often two activities occur
within a distance of d ∈ Z (i.e., with d activities between them, where negative distances are
considered right-to-left). Secondly, queries are used to construct fitting DECLARE constraints
from these knowledge bases. For that, custom support functions for each DECLARE construct
are proposed. For instance, the Existence(n, a) constraint, which specifies that activity a occurs
at least n ∈ N0 times, has an associated support function of 1 − ∑n−1

i=0 Wa (i) / |L|, where Wa (i)
counts how frequently a occurs i times in traces of L and |L| refers to the number of traces in the
event log L. MINERful is especially focused on efficient runtime speed, taking only a few sec-
onds for event logs, with a usual number of activities (e.g., up to 50 unique activities) [17]. The
knowledge base is constructed using a single pass through all cases of the log, but is quadratic
w.r.t. the number of activities in the log and the length of the traces [17].

2.1.2 DCR Graphs

Dynamic Condition Response Graphs (DCRGraphs) are declarative processmodels in the form of
a directed graph of event nodes, representing executable elements of the model2, and edges, which
assign one of four relations between the connected event nodes [18]. DCR Graphs were first pre-
sented by Hildebrandt and Mukkamala in 2010 [18]. It was the authors’ solution to an industry
use case that required to dynamically remove certain constraints based on other constraints [7].
Such dynamic relaxations are not possible in DECLARE, where the models correspond to the
conjunction of individual constraints [7]. The semantics of DCR Graphs are defined by transfor-
mation of markings, similar to how token markings are used for Petri nets [7, 18]. DCR Graph
markings consist of three binary indicators per event node:

Ex indicating whether the event node has already been executed in the past
Re indicating whether the event node is pending (i.e., required to be executed or excluded)
In indicating whether the event node is included (i.e., currently relevant to the process)

In the context of finite traces, a DCR Graph marking is accepting, if there are no event nodes
which are both included (In) and pending (Re) [7, 18, 19]. Playing out a DCR Graph corresponds
to executing event nodes, which transfers its current marking to an updated one. In a given DCR
Graph and marking, an event node e can be executed only if certain conditions apply (i.e., e has
to be included and event nodes, that are a condition of e, have to be executed or excluded). This

2Not to be confused with past process execution elements, which we typically call events. Multiple DCR Graph
events can have the same activity, similar to multiple transitions with the same activity label in a labeled Petri net.

8

Chapter 2. Related Work

transforms the given marking to an updated marking, based on the response, condition, excludes
and includes relations involving e. For instance, a response relation e•→ e′ means that e′ will
become pending in the updated marking [18].

This marking approach is different from the semantics of DECLARE, where LTL formulas are
internally used to check if a given event sequence satisfies the constraints, without a stateful
marking of the DECLARE constraints.

Discovering DCR Graphs

Iterative Relaxation In [20], the authors presented the first algorithm to automatically dis-
cover DCR Graphs [7]. It takes a similar approach to the Declare Miner from [13], and uses
iterative relaxation: first considering a model with all possible constraints involving the activi-
ties of the log [20]. In particular, between all pairs of activities, there are condition, exclusion,
and response relations in this initial model. Next, the traces of the input event log are iterated
and all constraints prohibiting the observed behavior are removed. For instance, if at the end of a
trace there is an activity with an unfulfilled response relation, this relation is removed. Through
this relaxation approach, the final discovered model is guaranteed to have perfect fitness, i.e.,
allow all behavior in the input event log.

ParNek and DisCoveR In 2019 Nekrasaite et al. presented the DCR Graph discovery algo-
rithm ParNek [21]. ParNek takes an opposite approach, starting with an empty model and
then adding constraint relations using multiple independent algorithms. The authors evaluated
ParNek and compared it to the iterative relaxation discovery algorithm from [20], as well as
the MINERful algorithm for discovering DECLARE constraints from [17]. The evaluation sug-
gested that ParNek discovered significantly simplermodels compared to [20] while still providing
comparable precision and also performed similarly well overall compared to MINERful. Later,
Back et al. expanded the general approach of ParNek in [19] with DisCoveR, focusing especially
on fast runtime.

2.1.3 Understandability of Declarative Models

A key advantage of declarative process model languages is the simplicity of declarative models
for unstructured and knowledge-intensive processes [7]. However, a key issue still lays in the un-
derstandability of declarative models, especially considering that imperative modeling languages
are more common and popular. In [22], the authors investigated the understandability of DE-
CLARE models compared to imperative BPMN models. The subjects, students enrolled in busi-
ness process management courses, were provided with reference material and were then asked
to complete different tasks for equivalent BPMN and DECLARE models. On average, the sub-
jects’ answers were both more accurate and faster for the imperative BPMN model. The authors
note, however, that the subjects were already more familiar with imperative process modeling
languages than with declarative ones.

In [23], the authors conducted another study, instructing subjects to think out loud while describ-
ing DECLARE models. This also allowed analyzing the approach subjects take to read DECLARE
models. The results indicate that people attempt to read the DECLARE models sequentially, for
instance trying to first identify an entry point of the process, although a clear entry point might
not exist for declarative models. In a follow-up study presented in the same paper, further sce-
narios, for instance, involving the layout of the presented DECLARE models, were tested. Most

9

Chapter 2. Related Work

findings of the initial study could be confirmed and refined in the follow-up study. Further find-
ings include, that subjects struggled especially with combinations of constraints, while single
constraints posed fewer problems in understandability.

2.2 Process Querying

Process Querying research covers filtering and manipulation of process repositories, based on
a (formal) query [24]. There exist many types of approaches, with different input, output and
goals, under the umbrella of Process Querying. For instance, process repositories might contain
process models as well as process executions. Some process querying methods are concerned
with selecting process models matching a given query from the repository, others with selecting
instances (i.e., cases) from event data. In [24], Polyvyanyy et al. categorize Process Querying
research into four groups: StructuralQuerying, BehavioralQuerying, Process ExecutionQuerying,
and Event LogQuerying. In the following, we will focus only on Event LogQuerying approaches,
which are based on only event data as input, without a corresponding process model, as this
category is most closely related to our presented approach.

Fazzinga et al. presented Log Activity Queries in [25], allowing for both aggregated and unag-
gregated queries of activity executions (i.e., events) or process executions (i.e., cases). The ap-
proach allows specifying both case-level and event-level query criteria, and also permits speci-
fying event-level criteria for the events in a queried case.

In [26], the authors describe the Process Instance Query Language (PIQL). It allows querying the
number of either process instances (i.e., cases) or process tasks (i.e., events) fulfilling specified
criteria. PIQL is specifiedwith formally defined syntax, but English language patterns, that trans-
late to this formal syntax, are also presented with the goal of allowing usage by non-technical
people.

The proprietary Celonis Process Query Language (Celonis PQL) introduced in [27] is a very com-
prehensive domain-specific querying language, with more than 150 implemented operators. Like
many other querying languages (e.g., [28]), Celonis PQL is heavily inspired by SQL but focuses
specifically on process mining functionality, while omitting less relevant general query features.
Celonis PQL is tightly integrated in the commercial product offered by Celonis. For example,
this allows queries to use an already defined underlying data model schema, which eliminates
the need to specify table joins manually or explicitly (as would be the case with JOIN in SQL).
Celonis PQL also allows both aggregated and unaggregated queries, called KPI and dimension,
respectively. An example aggregating Celonis PQL query is showcased in Code 1.

Celonis PQL also supports querying process cases based on a regex of their activity trace. For
example, the regex 'A' >> 'B' >> ('C' | 'D') matches cases where first A and then B is
executed with either C or D following afterwards.

All the previously mentioned work on process querying is mostly focused on traditional, flat
event data. However, in [29], Esser et al. describe storing multidimensional (i.e., object-centric)
event data in graph databases. The authors describe how the input event log is represented in the
graph database and detail the required transformation to insert input event data (provided as CSV
files) to the graph database. The authors consider event data in the traditional, flat XES format
as example input event logs (e.g., the BPI Challenge 2017 log from [30]) which are enhanced
with domain knowledge to identify and model different involved entities. The declarative graph
querying language Cypher can then be used to query entities or subgraphs as well as aggregated

10

Chapter 2. Related Work

1 COUNT(DISTINCT CASE WHEN
2 "Acts"."Activity" = 'Check Application'
3 AND "Acts"."Activity" = ACTIVITY LEAD("Acts"."Activity",2)
4 AND "Acts"."Activity" != ACTIVITY LEAD("Acts"."Activity",1)
5 THEN "Acts"."CaseID"
6 ELSE NULL
7 END)
8 / COUNT TABLE("Cases")

Code 1: An example Celonis PQL query calculating the fraction of cases exhibiting ping-pong
behavior, i.e., cases where there are two Check Application activities with one other activity
in between. The ACTIVITY LEAD is a process-mining specific function, which returns the next
event row for the given offset based on the current event row. Example inspired by [27].

values from the graph database. A simple example Cypher query is shown in Code 2. The authors
also present more complex queries, for example for determining the distance, in the form of
number of activities, between events of certain types associated with a common offer object.

1 MATCH (o:Entity {EntityType: 'Offer'}) <-[:CORR]- (e1:Event) -[:DF*
{EntityType: 'Offer'}]-> (e2:Event)↩→

2 WHERE e1.Activity = "O_Created" AND e2.Activity = "O_Cancelled"
3 RETURN e1,e2

Code 2: A Cypher graph database query for a graph database based on the BPI Challenge 2017
Loan Application process (see [30]). It queries all Offer objects with associated events e1 and
e2, with activities O Created and O Cancelled, respectively, where e1 is eventually followed
by e2. Adapted from [29].

For the mentioned dataset, the query shown in Code 2 yields 20,898 results and can be executed
in around 140ms according to [29]. However, measuring the execution time of Cypher queries
in Neo4J is nontrivial, and it is unclear what measure exactly the authors reported in [29]. For
instance, the execution time reported by Neo4J by default only measures the time until the first
result is available. As most query operations are streamed and evaluated lazily, the evaluation
time reported byNeo4Jmight bemisleading. Moreover, queries and their resultsmight be cached,
which improves performance in real-life use cases but makes it more difficult to conduct perfor-
mance measurements reproducibly. Executing the query shown in Code 2 but returning only the
total count (i.e., using RETURN count(*) instead of the last line) on the freshly restarted Neo4J
database takes 1216ms on our machine (see Chapter 6 for hardware specifications). However,
the returned result summary reports that the result was available after 447ms.

2.3 Object-Centric Process Constraints

Next, we present related work for object-centric constraints or object-centric declarative process
models.

11

Chapter 2. Related Work

2.3.1 OCBC

In [31], the authors presented Object-Centric Behavioral Constraint (OCBC) models. OCBC mod-
els combine behavioral constraints, in the form of a Behavioral Constraint Model (BCM) inspired
by DECLARE patterns, with object classes, in the form of a ClaM data model, a simplified ver-
sion of UML class diagrams. Considered on their own, the BCM defines constraints similar to
DECLARE, e.g., that for the Place Order activity there should be a Pay Order activity as a re-
sponse. Similarly, the ClaM model on its own describes relationships between the object classes,
for instance that every item is associated with exactly one order and an order contains at least one
item. However, if put together the DECLARE-style constraint relations in the BCM are consid-
ered for the case notion of specified objects of the object classes, indicated by dashed and dotted
arrows between the ClaM and BCM model. An example OCBC constraint model for an order
management process is shown in Figure 2.2. For instance, the dashed line annotated with “1 : 1”
between the Order object class in ClaM and the Place Order activity in BCM models that for
each event of type Place Order there should be exactly one involved object of type Order and
the otherway around (i.e., each Order should be involvedwith exactly one Place Order event).
The approach also allows for even more expressive constraints: For example, specifying that for
every Place Order event there is a Pick Item response event, involving an Item object that
is associated with the same Order object as the aforementioned Place Order event.

Place
Order

Pick
Item

Order Item
1 1..*comprised of

1

1

order

1

1

item

Figure 2.2: An example OCBC constraint. The BCM submodel, shown on the top in blue, contains
DECLARE-like constructs. On the bottom, the ClaM data submodel is shown. Both models are
connected to express constraints, for instance specifying that there should be exactly one Place
Order event per Order object and vice versa. Figure inspired by [31].

In [32], the authors described a discovery method for OCBC models based on object-centric in-
put event data. First, basic relation cardinalities constraints (e.g., the allowed number of Pay
Order events per Order object or the allowed number of Items associated with an Order)
can be derived by simply counting the relations in the input data and generalizing based on the
counts. Discovering the DECLARE-style constraints between activities based on the data models
is more involved: For that, two activities and the either one or two related object classes need to
be identified, for which constraints between the activities, based on the object classes should be
discovered. The authors present two methods for identification: 1) a triangle pattern involving
a single object class and two activities, where instances of the object class are associated with
events of both activities and 2) a square pattern involving two object classes with a class rela-
tion and two activities, where related instances of the object classes o1 and o2 are associated
with events of the activities a1 and a2, respectively. Based on the identified activities and object
classes, all possible behavioral constraints between the activities (corresponding to the possible
DECLARE constraint relations between them), can be checked for fitness based on the data and,
if appropriate, added to the discovered model. As extensions to this main approach, the authors
also present additional filtering for simplifying the discovered OCBC models by considering the
support of the constraints. Furthermore, the authors discuss how to deal with infrequent behav-

12

Chapter 2. Related Work

ior in the input log (i.e., noise) with the goal to discover more precise models. Specifically, for
selecting which behavioral constraints to add between two activities (given already identified
object class(es)), different discrete variants of possible source and target event counts are consid-
ered, based on their frequency. For instance, if only the variant (1; 1) (i.e., there is one allowed
target activity before the reference event, and also one allowed after the reference activity) is
frequent, response relations in both directions should be added to the model. If, on the other
hand, only the variant (0; 1) (i.e., there is one allowed target event after the reference event, but
none before the reference event) is frequent, a unary response and a non-precedence between
the reference and target activity should be added to the model.

2.3.2 OCCG

In [6], the authors introduced the concept of Object-Centric Constraint Graphs (OCCGs). These
constraint graphs can capture interactions between objects and events, as well as control-flow
between event types based on a given object type. Additionally, performance metrics regarding
events can be included. Given an OCCG, an object-centric event log can be checked against it,
resulting in a Boolean value, which indicates if the OCCG is violated for the log. An OCCG
is a directed graph made up of nodes, which correspond to either an activity, an object type
or a performance formula (e.g., waiting times). The nodes in the graph are connected through
different types of edges: Control-flow edges connect two activity nodes and specify that there is a
causal, concurrent or choice relationship between the activities. Additionally, there can be a skip
control-flow edge involving just one activity node, specifying that the activity is not executed. All
these control-flow edges are associated with a specific object type. This object type determines
in relation to which objects the control-flow is considered. Thus, the individual control-flow
edges only consider one object-type, effectively selecting this object type as the case notion in
this context. Similarly, Object-involvement edges connect an object type node with an activity
node. They are associated with a count range, specifying the number of objects of the connected
object type should be associated with events of the specified activity. Performance edges connect
a performance formula (e.g., average waiting time in for the last two days) with the activity for
which the formula should apply. Figure 2.3 shows a few example OCCG constructs.

pay order
payment
reminder

causal

Order,0
a

confirm
order

item
0..0

0
b

avg-2days-
waiting-time
< 10 (days)

payment
reminderc

avg-2days-item-
frequency

> 10 (items)

confirm
order

item
20..*

0
d

Figure 2.3: Four example OCCG constructs labeled a – d. Activities are represented as rectan-
gles, object types as circles and performance metrics as rounded rectangles. Put into words these
constraints encompass: a) No payment reminder after an order was paid; b) No order confirma-
tion without any involved items; c) The 2-day-average waiting time for the activity “payment
reminder” should be less than 10 days; d) No confirmation of orders with more than 20 items if
the 2-day-average item count for the “confirm order” activity is over 10 items. Inspired by [6].

2.3.3 OCCM

In [33], Adams et al. introduced the concept of object-centric process executions, attempting to
adapt the concept of cases for traditional event data to an object-centric setting. Object-centric
process executions are graphs consisting of events as nodes, where directed edges between events

13

Chapter 2. Related Work

indicate that there exists an object for which these events directly follow each other. These graphs
can be constructed for a given subset of objects, with the requirement that all the objects have to
be somehow connected by events. Naturally, there are many subsets of objects satisfying these
criteria to choose. The authors describe two general methods to select such subsets: Choosing
all maximal subsets satisfying the criteria (corresponding to connected components in a con-
structed object graph) or (manually) selecting a leading object type and for each object of that
type constructing an object subset “centered” around this object.

Based on the concept of object-centric process execution from [33], Object-Centric Constraint
Models (OCCMs) are presented in [34]. An OCCM consists of three different subgraphs: A
Process Flow Cardinality Constraint Model (CCM), a Process Flow Temporal Constraint Model
(TCM), and a Performance Constraint Model (PCM). The CCM contains directed edges between
activity nodes, indicating that the events of the source activity should be followed by activities
of the target activity. Additionally, each edge has a preceding and succeeding cardinality, which
indicates the number of events of the source or target activities that should occur before or after
one event of the source or target activity, respectively. TCMs also contain activity nodes and di-
rected edges between them, which constrain the minimum or maximum time duration between
events corresponding to the connected activities. Not all events in the process execution with
the corresponding activity are considered, but only either the first or last one. For that, edges
are assigned to a source and a target temporal pattern, which can be either be first or last.
Finally, the PCM component can include multiple different types of constraints, for example re-
garding the number of objects of a given object type associated with events of a specified activity.
Additionally, it also allows specifying lower and upper limits on the number of occurrences of a
given activity there should be in a process execution. Furthermore, the waiting time of events
for a specified activity can also be constrained in PCMs. In Figure 2.3 we present a few example
OCCM constructs.

confirm
order item

1..*
bpay order payment

reminder
0..0a 0..*

payment
reminder Frequency

0..3
c payment

reminder pay orderd
first last

(0,1,weeks)

payment
reminder

Waiting
Time

≥ 4 days
e

Figure 2.4: Five example OCCM constructs labeled a – e. Activities are represented as rectangles,
object types as circles and time/frequency performance types as wide ellipses. Put into words
these constraints encompass: a) No payment reminder after an order was paid; b) No confirma-
tion of orders with 0 items; c) At most three payment reminders; d) The (last) pay order event
should occur within 1 week of the first payment reminder; e) The waiting time for events of type
“payment reminder” should be at least 4 days. Inspired by [34].

2.4 Process Filtering

Many process mining tools, like Fluxicon Disco3, allow users to filter event data as well as ex-
plore and export the resulting filtered view. Disco, for instance, supports filtering both cases and

3See https://fluxicon.com/disco/.

14

https://fluxicon.com/disco/

Chapter 2. Related Work

individual events. A screenshot of its user interface is shown in Figure 2.5. For example, event-
level attributes can be used to filter out all events for which the attribute value is not included
in a specified list of allowed options. Case-level filter criteria includes the option to filter cases
based on the first and last event activity of the case. Moreover, the event attribute filters can also
be modified such that all cases, where at least one event fulfills the filter criteria, are included
completely (i.e., retaining all events of the case).

Figure 2.5: A screenshot of the Disco filtering interface for creating an Endpoints filter, which
filters cases based on the activity of their first and last event.

There is not much work published which addresses filtering object-centric event data. While
in [35], Berti presents approaches for filtering and sampling object-centric event data, the tech-
niques largely focus on simple filters for removing noise or infrequent data.

2.5 Discussion

The related work we discussed in this chapter covered declarative process models, process con-
straints, process querying and process filtering. All these concepts are relevant for our presented
approach. While there are some substantial differences between these concepts, we also consider
them to be closely related to each other. First off, declarative process models commonly contain
multiple (declarative) constraint constructs, which can mostly also be considered separately on
their own. A connection between constraints and querying then manifests for many approaches,
where constraints or declarative models do not impose restrictions globally, but for a specific
process case or event (or also for objects if OCED is considered). Then, identifying the violated
instances has a strong correspondence with querying instances based on some criteria (i.e., the
negated constraint). Similarly, filtering event logs is usually also done by imposing certain filter
predicates for cases or events, which define if the instance should be included or filtered out.
Those filter predicates can again also be understood as constraints, where only the non-violating
instances should be included in the output. However, filtering additionally is assumed to produce
a complete, well-formed event log as output. In contrast, querying techniques oftentimes only
output log fragments, for example individual events without a case concept.

15

Chapter 3

Preliminaries

In this chapter, we define preliminarymathematical notation and other concepts used throughout
the later parts of this thesis. We first start withmathematical basics, like basic logical expressions,
sets, or partial functions. Next, we cover the concept of universes, used to express all entities of a
certain type (e.g., all events, event types, variable names, etc.). Finally, we define Object-Centric
Event Data (abbreviated as OCED), which lays the formal basis for our presented approach, which
operates on such object-centric data.

3.1 Basics

We first introduce the general notation we use to express logic and conditions.
Definition 3.1 (Basic Logic and Conditions): We use the usual notation for logic state-
ments and conditions. For instance, we say that the expression 1 = 1 is true and 1 = 2 is
false. For two expressions i andk , we use i ∧ k for the conjunction (i.e., AND) and i ∨ k

for disjunction (i.e., OR). The negation of an expression i is written as ¬ i . Sometimes,
operators are negated using strikethroughs, for instance, 1 ≠ 2 is true and 1 ≠ 1 is false.
For convenience, we sometimes map truth values of expressions to the numbers 0 (for false)
and 1 (for true). As such, we can, for example, define a function f (x) = (x ≥ 5) ∨ (x = 3)
with the domain f : N → {0, 1}, where we then simply write f (1) = 0 and f (3) = 1.

Next, we introduce our notation style for sets of elements.
Definition 3.2 (Sets): We write X = {x1, x2, x3, . . . } to denote an (unordered) set of ele-
ments. The size (or cardinality) of X is written as |X |. If X is infinite, we write |X | = ∞.
Otherwise, if X is finite, we can also name all elements X = {x1, x2, x3, . . . , xn} (where n
implicitly denotes the size of the set; i.e., n = |X |). The empty set (i.e., the set of size 0) is
denoted with ∅ or {}.
We write x ∈ X to specify that x is an element of X and x ∉ X otherwise. We use set-builder
notation for constructing filtered sets based on a condition: {x ∈ X | condition on x}.
Given two sets X and Y , we write X ∩ Y = {x ∈ X | x ∈ Y } for the intersection. We write
X ⊆ Y if all elements of X are also elements of Y (i.e., if for all x ∈ X it holds that x ∈ Y).
We call X a subset of Y .
For a set Z and two subsets X ⊆ Z and Y ⊆ Z , we write X ∪ Y = {x ∈ Z | x ∈ X ∨ x ∈ Y }
for the union of the sets. Most of the time, Z is not given explicitly.

A set which is often used throughout this thesis is the set of natural numbers N0.

16

Chapter 3. Preliminaries

Definition 3.3 (Natural Numbers and Integers N0 N∞
0 Z): The set of natural numbers is

defined as N0 = {0, 1, 2, . . . }. We define N∞
0 = N0 ∪ {∞} to be the set of natural numbers

with an additional element representing infinity (∞).
The set of integers Z contains both negative and positive numbers, i.e., Z =

{0, 1,−1, 2,−2, . . . }.
A special subset of the natural numbers we frequently use to keep definitions short is the set of
numbers 1 to k, for a given k ∈ N0.
Definition 3.4 (Set of {1, . . . , n}): For brevity, we write k := {1, . . . , k} with k = ∅ if k < 1.

We also consider timestamps and durations. For simplicity, we formally consider timestamps
(and thus also durations) to correspond to the set of real numbers.
Definition 3.5 (Timestamps and Durations T): We represent timestamps as values in
T := R. As such, a time value t ∈ T can be considered as the number of seconds since the
UNIX epoch. We also use T for durations (i.e., t2 − t1 ∈ T for t1, t2 ∈ T). For durations, we
sometimes give values using commonly used units (e.g., in hours or days). For convenience,
we write T∞ := T ∪ {−∞,∞} for arbitrarily large or small delays or timestamps.

Given a set, we can also consider its powerset, which contains all possible subsets of the given
set.
Definition 3.6 (Powerset P): Given a set A, we write P(A) := {B | B ⊆ A} for the
powerset of A.

Partial functions are similar to standard functions, however only a subset of the source elements
have to be mapped to a value.
Definition 3.7 (Partial functions): We make use of partial functions to formalize assign-
ments of variable names to values. In particular, for a partial function f : A 9 B, we write
f (a) = ⊥ for any a ∈ A where a ∉ dom(f). We also use set notation (e.g., {1 ↦→ 2, 2 ↦→ 3})
for partial functions. For convenience, we sometimes use ⊥ as a value (e.g., as an element
in a set). For two partial functions f : A 9 B and g : A 9 B, we can form the (asymmetric)
union, where g takes precedence over f :

f ∪→ g = a ↦→
{
g (a), if a ∈ dom(g)
f (a), otherwise

For the special case, where dom(f) ∩ dom(g) = ∅ holds, we also write f ∪ g = f ∪→ g.
Normal functions which additionally map distinct elements to distinct values are called injective
functions.
Definition 3.8 (Injective Function):A function f : A → B is injective, if distinct elements
of A are mapped to distinct values in B, in particular:

∀b,b′∈B b ≠ b′ ⇒ f (b) ≠ f (b′)
To identify the closest values in Z either below or above a given value in R, we define floor and
ceiling functions.
Definition 3.9 (Floor and Ceiling Functions): For a real number x ∈ R we define the
floored and ceiled value of x as:

• bxc = max{n ∈ Z | n ≤ x} (Floor)
• dxe = min{n ∈ Z | n ≥ x} (Ceil)

For instance b3.2c = 3 and d3.2e = 4.
Finally, we introduce multisets as extensions of sets, which additionally represent the number of
times a value is contained in it.

17

Chapter 3. Preliminaries

Definition 3.10 (Multiset): A multiset is an extension of the concepts of a set allowing for
duplicate values. In particular, a multiset of values in a setA can be represented as a function
c : A → N0, which assigns each element a ∈ A to a count. We write B(A) = A → N0 for
the set of all multisets (also called bags) of A. To simplify notation, we represent multisets
using square brackets and by listing duplicates separately.
For instance, m = [2, 2, 4, 5, 6, 5] is a multiset of the natural numbers (i.e., m ∈ B(N0))
where the values 2 and 5 occur two times each. Alternatively, duplicate values can also be
represented by including their count as a superscript, for instance as m = [22, 4, 52, 6].

3.2 Universes

We introduce multiple universes for different purposes in Definition 3.11. For most of these uni-
verses, elements of them can already be distinguished based on the naming convention indicated
by the mentioned example universe elements.
Definition 3.11 (Universes): LetUΣ be the universe of strings. We use the following pair-
wise disjoint universes:
Uev ⊆ UΣ Universe of events (e.g., e1)
Uobj ⊆ UΣ Universe of objects (e.g., o1)
Uetype ⊆ UΣ Universe of event types (aka activities) (e.g., confirm order)
Uotype ⊆ UΣ Universe of object types (e.g., orders)
Uattr ⊆ UΣ Universe of attribute names (e.g., time)
Uqual ⊆ UΣ Universe of relationship qualifiers (e.g., places)
UobVar ⊆ UΣ Universe of object variable names (e.g., o1)
UevVar ⊆ UΣ Universe of event variable names (e.g., e1)
UsetName ⊆ UΣ Universe of binding set names (e.g., A)
Additionally, letUval be the universe of all values (with, for instance, T ⊆ Uval , UΣ ⊆ Uval ,
Uqual × Uobj ⊆ Uval). We also reserve some special symbols like ⊥ or ∗, which are used to
indicate missing values or wildcard placeholders, and assume they are included in any of
these universes.

3.3 Object-Centric Event Data (OCED)

Based on the universes introduced before, we formally introduce object-centric event data. The
formalization of OCED presented in Definition 3.12 is inspired by the OCEL 2.0 standard [2].
However, we keep our formalization very flexible. For instance, we do not define a set of available
object or event attributes based on the type of an event or object.
Definition 3.12 (OCED): Object-centric event data (OCED) can be described as a tuple L =

(E,O, eaval, oaval) of the following components:
• Events E ⊆ Uev set of events
• Objects O ⊆ Uobj set of objects
• Event Attributes eaval : E → (Uattr 9 Uval), which provides attribute values for
events. For convenience, we write eavale = eaval (e) for an e ∈ E as a shorthand. The
following properties should hold for eaval:

– ∀e∈E eavale (activity) ∈ Uetype : each event has exactly one event type
– ∀e∈E eavale (objects) ⊆ Uqual × O ∧ eavale (objects) ≠ ∅: each event has at

least one qualified reference to an object
– ∀e∈E eavale (time) ∈ T: each event has a timestamp

• Object Attributes oaval : O → (Uattr × T 9 Uval), which provides the attribute

18

Chapter 3. Preliminaries

values of an object o ∈ O at a concrete timestamp. For convenience, we write
oavalto (attr) = oaval (o) (attr, t) for a given o ∈ O, t ∈ T and attr ∈ Uattr as a short-
hand. The following properties should hold for oaval:

– For the time-stable attributes a ∈ {objects, type} ⊆ Uattr , the as-
signed value should not change over time. In particular, it should hold that
∀o∈O ∀t∈T ∀t ′∈T oavalto (a) = oavalt

′
o (a). For ease of notation, we simply write

oavalo (a) = oavalto (a, t) with an arbitrary t ∈ T for these attributes.
– ∀o∈O oavalo (type) ∈ Uotype : every object has exactly one object type
– ∀o∈O oavalo (objects) ⊆ Uqual ×O: an object can, optionally, contain qualified

references to (other) objects
In Example 3.1, we present a small example OCED of an imaginary order management process
inspired by [36]. Later examples are also themed around an order management OCED, but are
not directly based on this example and the given object and event sets.
Example 3.1 (Simple OCED): To represent an example OCED, we first define the set of
objects as O = {o1, o2, o3, o4} and the set of events E = {e1, e2, e3, e4, e5, e6}. The attribute
values of all objects and events are then presented in the tables below. Time-stable object
attributes are marked with an ∗ in the timestamp column. Apart from the mandatory at-
tributes, the following two custom attributes are added: The customer o1 has an attribute
city, indicating the city of residence of the customer. After providing the city initially in
2016, the attribute was updated in 2018, as the customer moved residency. Moreover, the
payment reminder event e5 has an attribute fee, indicating the additional fine incurred
by the late payment (e.g., 15€).

Table 3.1: Object Attribute Table

Object Attribute Timestamp Value
o1 type ∗ customers
o1 objects ∗ {(places, o2)}
o1 city 2016-01-06T14:15 Bonn
o1 city 2018-09-03T10:32 Aachen
o2 type ∗ orders
o2 objects ∗ {(contains, o3), (contains, o4)}
o3 type ∗ items
o4 type ∗ items

Table 3.2: Event Attribute Table

Event Attribute Value
e1 activity place order
e1 objects {(customer, o1), (order, o2), (item, o3), (item, o4)}
e2 activity pack item
e2 objects {(item, o3)}
e3 activity pack item
e3 objects {(item, o4)}
e4 activity ship items
e4 objects {(ships, o3), (ships, o4)}
e5 activity payment reminder
e5 objects {(recipient, o1), (order, o2)}
e5 fee 15
e6 activity pay order
e6 objects {(order, o2)}

19

Chapter 3. Preliminaries

The resulting metamodel of our OCED formalization is shown in Figure 3.1. This metamodel
includes both the formal definition and further formalized assumptions (e.g., that every event
has exactly one activity attribute).

object
attribute value

time

event
attribute value

activity /
event type

object type

quali�er

objectevent
* 1

1

*

1

*

*
*

quali�er

1 *1*

*

1 1

*

eaval oaval

activity type

time

objects

objects

* *

attribute name
1 1

Figure 3.1: Metamodel of OCED used in this thesis. Mainly, we allow for events and objects,
each with optional attributes. Object attributes are generally also associated with a timestamp.
Formally, the attribute values are provided by the functions eaval and oaval. Other relationships
are implemented using these attributes and are marked in blue in the metamodel. For instance,
the activity of an event is simply a special attribute that every event has exactly once. The special
attribute names corresponding to other relationships are shown in purple, like, for instance,
activity.

Next, we define some convenient shorthand notations for OCED, which allows us to keep later
definitions and formalizations simpler and shorter.
Note 3.1 (OCEDNotation Shorthands): For simplicity, we use the following notations for
a given OCED L = (E,O, eaval, oaval):

• EL = E and OL = O for the set of objects or events of L, respectively
• Function typeL ∈ O ∪ E → Uotype ∪ Uetype , which assigns object or event types to
objects or events, defined as:

typeL (x) =
{
oavalx (type), if x ∈ O
eavalx (activity), if x ∈ E

• Function timeL ∈ E → T with timeL (e) = eavale (time), which maps an event to its
timestamp

• Given an optional qualifier q ∈ Uqual ∪ {∗}, we define the function objqL : (E ∪ O) →
P(O), which assigns an event or object to its set of object references, defined as:

objqL (x) =
{
{o | (q′, o) ∈ eavalx (objects) ∧ (q = ∗ ∨ q = q′)}, if x ∈ E
{o | (q′, o) ∈ oavalx (objects) ∧ (q = ∗ ∨ q = q′)}, if x ∈ O

Additionally, for simplicity we also write objL = obj∗L for all object references without
considering the qualifiers.

20

Chapter 4

Process Queries and Constraints
using Variable Bindings

In this chapter, we present the query and constraint approach proposed in this thesis. We first
give an introduction into the intuition of our approach and then present the structure of the
remaining chapter. As such, this chapter as a whole will address research questions RQ2, RQ3,
RQ4 and RQ5 as well as the corresponding research goals and contributions.

Our approach makes full use of the structure and relationships of OCED and is inspired by how
constraints are formulated mathematically or in natural language. To motivate this intuition be-
hind our concept of constraints, we first want to look at an example constraint in Example 4.1
and dissect its textual description, which contains multiple, nested queries for events and ob-
jects. This constraint, as well as later examples, are formulated for a fictional order management
process OCED, inspired by the simulated dataset from [36].
Example 4.1 (Simple constraint): Consider the following textual description of a con-
straint: “Every placed order not paid within two weeks should have at least one payment
reminder sent”. If dissected, this description contains multiple parts, which correspond to
nested querying of events and objects:

• “Every placed order”: Query all objects o1 of type orders with corresponding
confirm order event e1.
(A) “paid within two weeks’: Query all pay order events e2 associated with o1

that occur at most two weeks after e1.
(B) “payment reminder sent”: Query all payment reminder events e2 associated

with o1.
We will later precisely define how object-centric querying and constraints according to our ap-
proach are constructed, but the basic idea revolves along the nested querying segments presented
above. Before that, we need to introduce some basic concepts that allow forging the mathemat-
ical formulation of the nested queries and constraints in a general framework.

Thefirst sections of this chapter presents our approach formally, addressingRQ2 andRQ3 aswell
as the research goal RG3 and the corresponding contribution CT2. The approach formalization
consists of three main parts:

1. Variable Bindings We first introduce the concept of variable bindings, which represent a
mapping of variable names to actual objects and events of an OCED.They make it possible

21

Chapter 4. Process Queries and Constraints using Variable Bindings

to discuss sets of bindings fulfilling certain predicates.

2. Nested Querying of Bindings The querying and quantification of objects and events is
conceptualized as a binding box, which constructs variable bindings, given variable names
and the corresponding object or event types these variables should have, as well as ad-
ditional filter predicates (e.g., that certain variable values should have a relation in the
OCED). Next, to enable nested querying of bindings, we introduce the concept of query
trees.

3. Adding Constraints Expanding on the process querying foundation, we add the ability
to define allowed and disallowed behavior. In particular, we introduce labeling which de-
termines, for each output binding of a query, if it is to be considered satisfied or unsatisfied.
The labeling function can also be based on the child nodes of a node in the tree, for instance,
requiring that at least one child binding in the nested query exists, like in Example 4.1.

To sum up, we start by formalizing variable bindings, binding boxes and other concepts of the
presented object-centric process querying approach. Based on these concepts, we continue with
building a constraint system based on the querying concepts. Additionally, after we presented
the full formalization of our approach formally, we also detail additional aspects of our approach.
In particular, we cover:

4. Efficient Evaluation Our proposed query and constraint approach is declarative. For
efficiently computing the results of a query or constraint, however, an algorithmic formu-
lation of the declarative approach needs to be constructed. To address this, we present a
recursive algorithm which can compute the query and constraint results. Additionally, we
focus on specific subroutines of this algorithm which implement the declarative approach
of binding boxes efficiently. This section addresses RQ4 and the research goal RG5, as
well as contribution CT3.

5. Automatic Constraint Discovery Discovering constraints in our proposed declarative
approach is a very interesting problem. It is also very challenging, as the high expressive-
ness permits many types of constraints. We describe two basic constraint types that can
be discovered based on an input OCED, which are both highly relevant in practical pro-
cesses and applications. Additionally, we also describe how generally, simple constraints
can be combined to form more complex constraints, and demonstrate this by presenting
the automatic discovery of OR-constructs of constraints. This section addresses research
question RQ5 and encompasses RG6, corresponding to part of our contribution CT4.

6. Extensions We also present extensions of our approach, specifically allowing for more
expressive predicates in practice and general annotations of output bindings. For that, an
expression programming language is used, which can be used to write simple yet very
powerful predicates. Finally, we also mention how this extension can be advanced further,
to allow annotating output bindings not only with a Boolean violation status but any gen-
eral value. This also enables the computation and tracking of Key Performance Indicators.

22

Chapter 4. Process Queries and Constraints using Variable Bindings

4.1 Bindings and Binding Predicates

We first introduce the concept of variable bindings. A variable binding is a single instantiation of
concrete objects and events of the OCED, which are referred to using variable names. In a natural
language constraint like “For all orders o, there is exactly one ‘pay order’ event e associated with
o”, the latter part (after the comma) references a concrete binding of o and can only be evaluated
for an actual object of an OCED (bound by the first part).
Definition 4.1 (Variable Binding): Let L be an OCED. In the context of L, we define the
set of variable bindings BL as:

BL = {b1 ∪ b2 | b1 ∈ (UevVar 9 EL) ∧ b2 ∈ (UobVar 9 OL)}
Bindings make the implicit construct of a variable name referring to a variable value explicit.
The universe of event and object variable names are disjoint (i.e.,UevVar∩UobVar = ∅). Thus, for
an OCED L, a binding b ∈ BL and an object variable v ∈ UobVar either b(v) = ⊥ or b(v) ∈ OL. In
Example 4.2, we present a few example bindings.
Example 4.2 (Variable Binding): Let L be an OCED with the objects o1, o2, o3 ∈ OL and
events e1, e2, e3 ∈ EL, and let o1, o2, o3 ∈ UobVar and e1, e2, e3 ∈ UevVar be object and
event variable names. Then the following are examples for bindings over L:

• b1 = {}
• b2 = {o1 ↦→ o1}
• b3 = {e1 ↦→ e1, e2 ↦→ e3, e3 ↦→ e2, o2 ↦→ o1, o3 ↦→ o3}

In the context of an OCED, we can also introduce the concept of child and parent bindings,
where a child binding contains all the object and event variables of the parent, mapped to the
same objects and events of the OCED, respectively, but can additionally introduce new object or
event variables. Child bindings can thus be understood as expansions of parent bindings.
Definition 4.2 (Parent and Child Bindings vL): Let L be an OCED. We define a parent-
child relation vL between bindings over L. For two bindings, a ∈ BL and b ∈ BL, we define
it as follows: a vL b ⇔ ∀x∈dom(a) a(x) = b(x).
When a vL b, we call a a parent binding of b and b a child binding of a.
Clearly, vL is a partial order (i.e., reflexive, antisymmetric, and transitive).

The vL relation brings some structure to the set of bindings BL. For every OCED L, the empty
binding {} is clearly the smallest element in BL regarding vL. In Example 4.3, we showcase a few
example bindings and their parent-child-relationships.
Example 4.3 (Parent and Child Bindings): Consider the OCED L and the bindings
b1, b2, b3 from Example 4.2. It holds, that b1 vL b2 and b1 vL b3. But b2 @L b3, as o1 is not
bound to a value in b3. If we additionally consider b4 = {e2 ↦→ e3, o2 ↦→ o1, o3 ↦→ o3}, it
holds that b4 vL b3.

Occasionally, we want to consider only a subset of the variables involved in a binding. This is
encompassed by restricting bindings to this subset of event and object variables.
Definition 4.3 (Restriction of Bindings): Let L be an OCED. Let b ∈ BL be a binding.
Moreover, let X ⊆ (UevVar ∪UobVar) be a set of variable names. The restriction of b on X
is then b |X ∈ BL with:

b |X (x) =
{
b(x), if x ∈ X
⊥, otherwise

The restriction of a binding simply only considers a subset of the variables bound by this binding.
Example 4.4 demonstrates the restriction of an example binding.

23

Chapter 4. Process Queries and Constraints using Variable Bindings

Example 4.4 (Restriction of Bindings): Consider an example OCED L and the binding
b4 ∈ BL considered before, where b4 = {e2 ↦→ e3, o2 ↦→ o1, o3 ↦→ o3}. The restriction of b4
to only the variables {e2, o2} is then b4 |{e2,o2} = {e2 ↦→ e3, o2 ↦→ o1}.

As we show in Lemma 4.1, the restriction of a binding b is always a parent binding of b, as the
remaining variables are mapped to the same values.
Lemma 4.1 (Restricted Binding is a Parent Binding): Let L be an OCED and let b ∈ BL
be a binding over L. Additionally, let X ⊆ (UevVar ∪ UobVar) be a set of event and object
variable names. Then the restricted binding b |X is a parent binding of b, i.e., b |X vL b.

Proof. Let b′ = b |X . We want to show b′ vL b. It holds that dom(b′) = dom(b) ∩ X
per Definition 4.3, and thus also dom(b′) ⊆ dom(b) and dom(b′) ⊆ X . Then, for every
x ∈ dom(b′), by Definition 4.3 it also holds that b′(x) = b(x).

Now that we have built a solid foundation of the concepts of bindings, we next aim to allow
constructing a set of bindings. For that, we first introduce a way to specify criteria for bindings
that enable filtering a set of bindings down, e.g., based on event-to-object or object-to-object
relationships of the underlying values.
Definition 4.4 (Binding Predicates): Let L be an OCED. Given L, a binding predicate de-
scribes a set of bindings which satisfy this predicate. We write PL for the set of all binding
predicates under L, which we do not specify further. Notably, we only specify two important
aspects of a predicate s ∈ PL: 1) A predicate induces a set of bindings that are satisfied for
it and 2) A predicate has a certain identifier or type, which allows differentiating predicates
even if they induce the same set of bindings. For a predicate statement s ∈ PL we use the |=
relation to indicate that a binding is satisfied for this predicate. If a binding b ∈ BL satisfies
a predicate s ∈ PL, we write b |= s. Additionally, we use the same notation for a set of
predicates S ⊆ PL: b |= S ⇔ ∀s∈S b |= s.

We specify collections of binding predicates for different purposes. For instance, we will next
define a predicate collection containing predicates based on object-to-object and event-to-object
relationships in an OCED. Afterwards, we also introduce a predicate collection for other data
attributes of events and object, like the total amount of an order.

First, however, consider a single example binding predicate s ∈ PL with b |= s ⇔∈ BL | b(o1) ∈
OL ∧ b(e1) ∈ EL ∧ b(o1) ∈ objL (b(e1)). This predicate is satisfied for all variable bindings
where the variables o1 and e1 are bound to objects or events of L, respectively, such that the
values are in an event-to-object relationship.

We introduce the predicate collection BASICL in the following, and will later define additional
collections. We assume that all introduced predicate collections are pairwise disjoint, even if
some contained predicates might induce the same set of bindings for some OCED.
Definition 4.5 (Basic Collection of Predicates BASICL): Initially, we define the binding
collection BASICL ⊆ PL in the context of an OCED L. It contains some basic predicates
based on object-to-object and event-to-object relationships in L and the time between events
in L. Recall the shorthand notations from Note 3.1 on page 20, as they are extensively used
in the predicate definitions. BASICL is made up by the following three predicate types:
• Event-to-Object Relationship: For an event variable v ∈ UevVar, an object variable
v′ ∈ UobVar and an optional relationship qualifier q ∈ Uqual ∪ {∗}, there is a predicate
E2O(v, v′, q) ∈ BASICL, with for any b ∈ BL:

b |= E2O(v, v′, q) ⇔ b(v) ∈ EL ∧ b(v′) ∈ OL ∧ b(v′) ∈ objqL (b(v))

• Object-to-Object Relationship: For two object variables v, v′ ∈ UobVar, and an op-

24

Chapter 4. Process Queries and Constraints using Variable Bindings

tional qualifier q ∈ Uqual ∪ {∗}, there is O2O(v, v′, q) ∈ BASICL, with for any b ∈ BL:

b |= O2O(v, v′, q) ⇔ b(v) ∈ OL ∧ b(v′) ∈ OL ∧ b(v′) ∈ objqL (b(v))

• Time between Events: For two event variables v, v′ ∈ UevVar and a duration interval
tmin, tmax ∈ T, there is TBE(v, v′, tmin, tmax) ∈ BASICL, with for any b ∈ BL:

b |= TBE(v, v′, tmin, tmax) ⇔ b(v) ∈ EL ∧ b(v′) ∈ EL
∧ tmin ≤ timeL (b(v′)) − timeL (b(v)) ≤ tmax

We then refer to a binding predicate s ∈ BASICL using the corresponding shorthand (e.g.,
E2O(e1, o1, order)).

The predicates in the BASICL collection can be combined to model complex relationships in-
volving multiple objects or events. However, let us first take a look at a simple example.

Example 4.5 (Simple Binding Predicate): Let L be an example OCED with o1, o2, o3 ∈ OL
and e1 ∈ EL. Consider the predicates s1, s2 ∈ BASICL, with s1 = O2O(o1, o2, ∗) and
s1 = E2O(e1, o1, ∗). Additionally, consider the bindings b1 = {o1 ↦→ o1}, b2 = {o1 ↦→
o1, o2 ↦→ o2, e1 ↦→ e1} and b3 = {o1 ↦→ o3, o2 ↦→ o4, e1 ↦→ e1}. As b1 does not assign
the variables o2 or e1, it holds that b1 6 |= s1 and b1 6 |= s2, respectively. Assuming an object-
to-object relation between o1 and o2 exists in L, b2 |= s1 would hold. The same applies
regarding o3 and o4 for b3. Similarly, with knowledge about the objects involved in e1, we
could determine if b2 |= s2 and b3 |= s2 holds.

We also introduce a predicate collection for data attribute predicates, which allow formulating
statements regarding general attributes of events or objects. For instance, in an order manage-
ment process, order objects might have an attribute price, referring to its total price.

Definition 4.6 (Data Attribute Predicates): Let L = (E,O, eaval, oaval) be an OCED. We
define a predicate collection for data attribute filters as ATTRSL ⊆ PL, with filter predicates
for the attribute values of events and objects.

• Event Data Attribute Equality: For an event variable en ∈ UevVar, an attribute
name att ∈ Uattr and a value v ∈ R ∪ T ∪UΣ, there is EAE(en, att, v) ∈ ATTRSL
with for any b ∈ BL: b |= EAE(en, att, v) ⇔ b(en) ∈ E ∧ eavalb (en) (att) = v .

• Event Data Attribute Range: For an event variable en ∈ UevVar, an attribute name
att ∈ Uattr and two values vmin, vmax ∈ R ∪ {−∞,∞} or vmin, vmax ∈ T∞, there is
EAR(en, att, vmin, vmax) ∈ ATTRSL with b |= EAR(en, att, vmin, vmax) ⇔ b(en) ∈
E ∧ eavalb (en) (att) ∈ R ∪ T ∧ vmin ≤ eavalb (en) (att) ≤ vmax .

• Object Data Attribute Equality: For an object variable on ∈ UobVar , an at-
tribute name att ∈ Uattr , a value v ∈ R ∪ T ∪ UΣ and a time-specifier T ∈
{ALWAYS, SOMETIME} ∪ UevVar, there is OAE(on, att, v, T) ∈ ATTRSL with:

– For T = ALWAYS with for all b ∈ BL:

b |= OAE(on, att, v, T) ⇔ b(on) ∈ O

∧ ∀t∈T
(
oavaltb (on) (att) = ⊥ ∨ oavaltb (on) (att) = v

)
– For T = SOMETIME with for all b ∈ BL::

b |= OAE(on, att, v, T) ⇔ b(on) ∈ O ∧ ∃t∈T oavaltb (on) (att) = v

25

Chapter 4. Process Queries and Constraints using Variable Bindings

– For T ∈ UevVar with for all b ∈ BL:

b |= OAE(on, att, v, T) ⇔ b(on) ∈ O ∧ b(T) ∈ E ∧ oavaltb (on) (att) = v

where, for b(T) ∈ E, we use t = timeL (b(T))

• Object Data Attribute Range: Similar to the event data attribute range predicate
types, we also allow object data attribute range predicates. For an object variable on ∈
UobVar , an attribute name att ∈ Uattr and two values vmin, vmax ∈ R ∪ {−∞,∞} or
vmin, vmax ∈ T∞ as well as a time-specifier T ∈ {ALWAYS, SOMETIME} ∪ UevVar, there
isOAR(on, att, vmin, vmax , T) ∈ ATTRSL. We omit a formal definition for brevity, as
it is simply a combination of the previously presented data attribute predicates (i.e.,
OAE adapted to range values, like in EAR).

Data attribute predicates allow considering event and object attributes beyond the predefined
standard attributes, like type or objects. In Example 4.6, we present how these data attribute
predicates can be used.
Example 4.6 (Data Attribute Predicates): Consider an order management OCED L,
where all events have an additional attribute location, specifying in which office loca-
tion an event happened. The predicate EAE(e1, location, Aachen) is then satisfied for all
bindings b ∈ BL, where the event variable e1 is bound to an event value (i.e., b(e1) ∈ EL),
which happened in the office in Aachen (i.e., eavalb (e1) (location) = Aachen).
Object attributes are more complex to handle, as they are associated with a specific moment
in time. For instance, an object o1 ∈ OL of type product might have different prices (rep-
resented by the attribute name price) at different timestamps: Initially it costs 50€, but the
price is increased to 75€ after a few months. Given the binding b = {o1 ↦→ o1}, the pred-
icate OAR(o1, price, 70,∞, ALWAYS) is then not satisfied by b, as the price is not always
above 70€. The predicate OAR(o1, price, 70,∞, SOMETIME), however, is satisfied by b, as
the price is above 70€ at some point in time.

26

Chapter 4. Process Queries and Constraints using Variable Bindings

4.2 Nested Querying of Bindings using Binding Boxes

Next, we introduce the concept of binding boxes, which encompass simple querying (i.e., quan-
tification and filtering) of bindings. For the quantification, it specifies a set of event and object
variables that should be assigned to concrete values, as well as the event or object types these
values should have. For filtering, a set of binding predicates specify if a binding should be part
of the output of a binding box or not. As an example, a binding box could specify, that the event
variable e1 should be bound to events with the activity pay order and that only such bindings
that additionally satisfy the data predicate EAE(e1, location, Aachen) are of interest.

The allowed event or object types for quantification are specified as a set to allow for maximal
flexibility. This enables, for instance, specifying that the event variable e1 should be bound to
events with the activity pay order or cancel order for queries where the actual outcome of
an order is irrelevant. Next, in Definition 4.7, we formally define a binding box. For simplicity,
we initially do not restrict the set of binding predicate a binding box can contain, and will specify
such restrictions later on when needed.
Definition 4.7 (Binding Box): Let L be an OCED. A binding box bL = (Var,Pred) over L
is a tuple consisting of:

• Var ∈
{
ev ∪ ob | ev ∈ UevVar 9 P(Uetype) ∧ ob ∈ UobVar 9 P(Uotype)

}
, a partial

function which specifies to values of which event or object types selected variables
should be bounda.

• Pred ⊆ PL, a set of binding predicates for filtering.
Intuitively, bL binds the variable names dom(Var) to all combination of values (i.e., events
or objects of L) where the predicate set Pred holds. For convenience, we sometimes write
Var(bL) = Var andPred(bL) = Pred. We define when a binding b ∈ BL satisfies the binding
box, written as b |= bL, as follows:

b |= bL ⇐⇒ b |= Pred ∧ dom(b) = dom(Var)
∧ ∀v∈dom(Var)

(
b(v) ∈ EL ∪ OL ∧ typeL (b(v)) ∈ Var(v)

)
Put into words, a binding box is satisfied for a binding if: 1) The binding is satisfied for the
predicates and, 2) the binding assigns exactly the variables specified by the binding box,
and 3) all assigned variable values in the binding have the correct types as specified by the
binding box.
We write BOXL for the set of all binding boxes under L.

aIn particular, formally, Var is a partial function of the type Var: (UevVar ∪ UobVar) 9 (P(Uetype) ∪
P(Uotype)), with the additional restriction that event variables are only mapped to sets of event types and
object variables are only mapped to sets of object types.

We first present a simple example binding box in Example 4.7. Of course, binding boxes can
also be more complex and can contain multiple variables and predicates. In general, a binding
box can contain arbitrary filter predicates. However, for now, we only consider binding boxes
bL = (Var,Pred) where Pred ⊆ BASICL. Later on, we also introduce other predicate types for
which this general definition of binding boxes is convenient.
Example 4.7 (Binding Box): Let L = (E,O, eaval, oaval) be an OCED of an order-to-
cash process, which is not fully defined here for brevity. Assume, however, that at least
{orders} ⊆ Uotype and {place order, confirm order} ⊆ Uetype .
Consider the simple binding box aL = (Var,Pred) with:

• Var = {e1 ↦→ {place order, confirm order}, o1 ↦→ {orders}}

27

Chapter 4. Process Queries and Constraints using Variable Bindings

• Pred = {E2O(e1, o2, order)}
Filter predicates are also particularly useful to represent a binding box visually, as the very formal
representation of binding box examples can quickly become cumbersome to read. Instead, wewill
use an alternative Z-notation style schema (cf. [37]) in further examples. For a binding box aL =
(Var,Pred), the elements ofVar are split intomultiple lines on the top. On the bottom (i.e., below
the horizontal line), the filter predicates Pred are listed using their shorthand notation.
Example 4.8 (Visual Notation for Binding Box): Consider L and aL from Example 4.7.
In the alternative notation style, aL can be represented like this:

aL
o1 : Object(orders)
e1 : Event(place order, confirm order)

E2O(e1, o1, order)

Next, we formally define the output binding set outL (bL) of a binding box bL.
Definition 4.8 (Binding Box Output): Let L be an OCED. Let bL be a binding box over L.
The output of bL is simply the set of bindings that satisfy bL.

outL (bL) = {b ∈ BL | b |= bL}
As mentioned before, the output binding set contains all bindings assigning object and event
variables to instances of the specified type that additionally fulfill the filter predicates Pred.
Next, we give an example binding box output set.
Example 4.9 (Binding Box Output): Consider the OCED L and the binding box aL from
Example 4.7 and Example 4.8. Assume that L contains only the objects o1, o2, o3 of type
orders, where all of them except o3 are associated with a place order event (i.e., with e1
and e2, respectively). Moreover, only o1 is additionally associated with a confirm order
event e3. Under these assumptions, we can specify outL (aL) as:

outL (aL) =
{{
o1 ↦→ o1, e1 ↦→ e1

}
,
{
o1 ↦→ o2, e1 ↦→ e2

}
,
{
o1 ↦→ o1, e1 ↦→ e3

}}
As all output binding set of a binding box share the same variables, the set can also be visualized
as a table. The columns of the table then correspond to the variable names, and for each output
binding there is one row in the table.
Example 4.10 (BindingBoxOutput Table):Consider the OCED L, the binding box aL and
the corresponding output set given in Example 4.9. Below, the output set of aL is visualized
as a table, where each row corresponds to one of the output bindings.

o1 e1
o1 e1
o2 e2
o1 e3

Next, we define a relation �L between binding boxes over an OCED L. This relation encom-
passes the concept of refined binding boxes, where new object or event variables are (optionally)
introduced, and the constraint filter is at least as strict as before.
Definition 4.9 (�L Between Binding Boxes): Let L be an OCED. We define the relation
�L between binding boxes over L. For two binding boxes over L, aL, bL ∈ BOXL, we say
aL �L bL holds if and only if:

• Var(aL) ⊆ Var(bL)

28

Chapter 4. Process Queries and Constraints using Variable Bindings

• Pred(aL) ⊆ Pred(bL)
We also call aL a parent binding box of bL and bL a child binding box of aL.

Later, we will show how this relation can be used to construct trees of binding boxes. The core
idea revolves around the following observations: 1) The variables introduced in the parent bind-
ing box are all also present in the child binding box. 2) All predicates of the parent are also
present in the child binding box. In particular, this implies that projecting the output set of the
child binding box on just the variables already introduced in the parent binding box is a subset
of the output set of the parent.

However, first consider Example 4.11, demonstrating the �L relation between two binding boxes.
Example 4.11 (�L BetweenBinding Boxes):Consider the OCED L and the example bind-
ing box aL from Example 4.7 and a second binding box bL = ({o1 → {orders}}, ∅).
Then, it holds that bL �L aL. Additionally, if we consider an additional third binding
box cL = ({o1 → {orders}}, {OAE(o1, price, 100, ALWAYS)}), it additionally holds that
bL �L cL but aL �L cL and cL �L aL.

Next, we define the restriction of binding box predicates on a subset of predicate types.
Definition 4.10 (Restricted Binding Box): Let L be an OCED and let a = (Var, S) ∈
BOXL be a binding box over L. Additionally, let X ⊆ PL be a set of binding predicates. The
filter-restriction of a to X , denoted as a |X , is the binding box a |X = (Var, S ∩ X) over L.

The restriction of binding boxes enables us to only consider a subset of predicates, for instance
only predicates of a specified type, for certain restrictions and definitions. Consider, for example,
Example 4.12, which builds the restriction on only basic predicates (i.e., BASICL).
Example 4.12 (Restricted Binding Box): Consider the OCED L from the previous
examples. Additionally, consider a binding box aL with:
aL = ({o1 → {orders}, e1 → {pay order}}, {E2O(e1, o1, ∗),OAE(o1, price, 100, ALWAYS)}).
The restriction of aL only considering predicates from BASICL is then aL |BASICL with:
aL |BASICL = ({o1 → {orders}, e1 → {pay order}}, {E2O(e1, o1, ∗)}).

So far, we introduced binding boxes and the �L relation between them. Next, we introduce
the last important concept for our process querying approach: query trees. A query tree is
a rooted, directed tree containing nodes corresponding to binding boxes, where an edge be-
tween two nodes corresponding to binding boxes a and b implies that a |X �L b |X for X =

BASICL∪ATTRSL. In other words, the binding boxes get more refined per tree layer when only
considering basic and attribute predicate filters. The reason for only considering those predicate
collections is that the other predicate collections we will define later are based on the query tree
structure itself, and in particular consider the child nodes of a given node. As such, these types
of predicates should not be added to the binding box of child nodes themselves.
Definition 4.11 (Query Tree): Let L be an OCED. A query tree over L is a tuple T =

(V , F , r, l, box), where:
• V is a finite set of nodes.
• r ∈ V is the designated root node (i.e., the only node with no parent).
• F ⊆ V × V is a set of edges between nodes, such that in the directed graph (V , F)
there is exactly one path from r to a for all a ∈ V (i.e., (V , F) is a rooted tree).

• l : F → UsetName is an injective function, assigning unique names to edges in F .
• box : V → BOXL is a function which maps each node in V to a binding box over L,
such that the following properties hold:

– For all nodes u ∈ V , Pred(box(u)) ⊆ BASICL ∪ ATTRSL ∪ CHILD SETT
u ,

where CHILD SETT
u is a new collection of predicates we will introduce next.

29

Chapter 4. Process Queries and Constraints using Variable Bindings

– For all edges (a, b) ∈ F with box(a) = a and box(b) = b, it holds that
a |BASICL∪ATTRSL �L b |BASICL∪ATTRSL .

As each node of the query tree is mapped to a binding box, we sometimes use the name of the
node to refer to the corresponding binding box in text (i.e., v0 instead of box(v0)). Before we
introduce the predicate collections CHILD SETT

u formally, we first present an example query
tree in Example 4.13 using only BASICL predicates. This query tree queries all confirmed or-
ders and also contains subqueries for A) all pay order events related to the order occurring
within 4 weeks of the order confirmation and B) all payment reminder events related to the
order.

Example 4.13 (Query Tree): Consider the OCED L from Example 4.7. Additionally, con-
sider the query tree T1 = (V , F , r, l, box)L with V = {v0, v1, v2}, r = v0 and F =

{(v0, v1), (v0, v2)}, such that l ((v0, v1)) = A and l ((v0, v2)) = B. The graph of T1 is shown
below on the top right annotated with exemplary output binding tables, while box is pre-
sented on the left. When showing examples of a query tree, the binding boxes naturally
contain many duplicates (highlighted in gray below). To ease readability, we often only
present the additions between binding boxes and their parents. In particular, we omit vari-
ables and basic or data predicates that are already present in the binding box of the parent
node. With these omissions (which wemark using Δ), box(v1) and box(v2) can be presented
more compactly, as shown below on the bottom right.

box(v0)
o1 : Object(orders)
e1 : Event(confirm order)

E2O(e1, o1, ∗)

box(v1)
o1 : Object(orders)
e1 : Event(confirm order)
e2 : Event(pay order)

E2O(e1, o1, ∗)
E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)

box(v2)
o1 : Object(orders)
e1 : Event(confirm order)
e2 : Event(payment reminder)

E2O(e1, o1, ∗)
E2O(e2, o1, ∗)

v0

v1 v2

A B

o1 e1
o1 e1
o2 e2
o3 e3
o4 e4

o1 e1 e2
o3 e3 e7
o3 e3 e8

o1 e1 e2
o1 e1 e5
o2 e2 e6
o3 e3 e9

Δbox(v1)
e2 : Event(pay order)

E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)

Δbox(v2)
e2 : Event(payment reminder)

E2O(e2, o1, ∗)

On the top right, we show exemplary output sets of box(v0), box(v1) and box(v2) as tables
next to the corresponding nodes. The rows for v0 are colored in four different colors. For v1
and v2, each output row is colored in one of them, indicating from which parent binding in
the output set of v0 the row is derived. The first two output binding rows for v0 (in cyan and
magenta) have exactly one child binding in the output set of v1 and none in the output set of
v2. For the third output binding row of v0 (in teal), one child binding in v1 exists, and there
are also two child bindings in the output set of v2. The last output row of v0 (in orange) has
no child binding in the output sets of v1 or v2.

We can also observe that the parent-child relation between output bindings is particularly in-
teresting. Recall the definitions of the vL and �L relation introduced in Definition 4.2 and Def-

30

Chapter 4. Process Queries and Constraints using Variable Bindings

inition 4.9. The �L relation between binding boxes over L is closely related to the vL relation
on their output binding sets. Consider an OCED L and a query tree (V , F , r, l, box), as well as
a specific edge (c, d) ∈ F . We write c = box(c) |BASICL∪ATTRSL and d = box(d) |BASICL∪ATTRSL .
Per definition, we then know that c �L d holds. Below, we visually showcase exemplary output
bindings outL (c) and outL (d) and the vL relation between them. For each binding b′ ∈ outL (d),
there is exactly one parent binding b ∈ outL (c). Put in other words, for the parent bindings in
outL (c) the vL relation partitions the elements of outL (d) into sets of child bindings. We prove
that this also holds in general, for any binding boxes a, b with a �L b in Lemma 4.2.

outL (c)

outL (d)

b0 b1 b2 b3

b′0 b′1 b′2 b′3 b′4 b′5

Lemma 4.2 (Unique Parent Binding in Parent Node Output): Let L be an OCED. Let
aL and bL be binding boxes over L with aL �L bL. For any output binding b ∈ outL (bL)
of bL, there is a unique a ∈ outL (aL) with a vL b. In particular, a is the reduced binding
a = b |dom(Var(aL)) of b. For brevity, we also write b |aL for this reduced binding.

Proof. We first show that such an a exists and then show its uniqueness.
Existence As aL �L bL, we know that b |= aL. Per definition of |= for binding boxes, for

the reduced binding b′ = b |aL it also holds that b′ |= aL, as the predicates of aL are a
subset of those of bL and only filter based on the variables introduced by aL itself. And
as b′ only contains event and object variables introduced by aL, clearly b′ ∈ outL (aL).
Furthermore, b′ vL b, per Lemma 4.1. X

Uniqueness Assume a, a′ ∈ outL (aL) with a vL b and a′ vL b. Clearly dom(a) = dom(a′),
as both are in the output set of aL. As aL �L bL, Var(aL) ⊆ Var(bL) and thus
dom(a) = dom(a′) ⊆ dom(b). In particular, per definition of vL, it then holds that
∀x∈dom(a) a(x) = a′(x) = b(x), or in other words: a = a′. X

In combination with these observations, the example query tree in Example 4.13 also motivates
the need for the predicate collection CHILD SETT

u for a node u ∈ V : Right now, the nested
querying does not really have any use case. In the presented example, we would want, for
instance, to identify bindings of box(v0) for which there is no child binding in the output of
box(v1) and box(v2). Put into words, such bindings would correspond to all confirmed orders
that were not paid within 4 weeks and also did not have a payment reminder sent. We introduce
CHILD SETT

u , which allow specifying such predicates based on the set of child bindings in the
context of a query tree. In these filter predicates, for an edge (u, v) ∈ F the (unique) edge name
l ((u, v)) (e.g., A) is used to conveniently reference the set of child bindings in v for a given output
binding of u.
Definition 4.12 (Child Set Predicates CHILD SETT

u): Let L be an OCED and T =

(V , F , r, l, box) a query tree over L. Given a node u ∈ V , the collection of set filter pred-
icates CHILD SETT

u available in box(u) are:
• Child Bindings Set Size: For all v ∈ V with e = (u, v) ∈ F where l (e) = A as
well as cmin, cmax ∈ N∞

0 , there is CBS(A, cmin, cmax) ∈ CHILD SETT
u , with for any

b ∈ outL (box(u)):

b |= CBS(A, cmin, cmax) ⇔ cmin ≤ |{b′ ∈ outL (box(v)) | b vL b′}| ≤ cmax

31

Chapter 4. Process Queries and Constraints using Variable Bindings

• Projected Child Bindings Set Size: For v ∈ V where e = (u, v) ∈ F holds with
l (e) = A as well as x ∈ Ev (box(v)) ∪ Ob(box(v)) and cmin, cmax ∈ N∞

0 , there is
CBPS(A, x, cmin, cmax) ∈ CHILD SETT

u , with for any b ∈ outL (box(u)):

b |= CBPS(A, x, cmin, cmax) ⇔ cmin ≤ |{b′(x) | b′ ∈ outL (box(v)) ∧ b vL b′}| ≤ cmax

• Child Binding Sets Equal: For v, v′ ∈ V where e = (u, v) ∈ F and e′ = (u, v′) ∈ F
holds with l (e) = A and l (e′) = B, there is CBE(A, B) ∈ CHILD SETT

u , with for any
b ∈ outL (box(u)):

b |= CBE(A, B) ⇔ {b′ ∈ outL (box(v)) | b vL b′} = {b′ ∈ outL (box(v′)) | b vL b′}

• Projected Child Binding Sets Equal: For v, v′ ∈ V where e = (u, v) ∈ F and e′ =

(u, v′) ∈ F holds with l (e) = A and l (e′) = B as well as x ∈ Ev (box(v)) ∪ Ob(box(v))
and y ∈ Ev (box(v′)) ∪Ob(box(v′)), there is CBPE(A, x, B, y) ∈ CHILD SETT

u , with for
any b ∈ outL (box(u)):

b |= CBPE(A, x, B, y) ⇔ {b′(x) | b′ ∈ outL (box(v)) ∧ b vL b′}
= {b′(x) | b′ ∈ outL (box(v′)) ∧ b vL b′}

Note, that the definition ofCHILD SET is recursive, as the predicates for child nodes are assumed
to be already defined when considering the parent node. However, as query trees are rooted,
directed trees and thus in particular also acyclic, the semantics of CHILD SET are still well-
defined. In particular, all predicates and output bindings can be considered from the bottom up,
starting at the leaf nodes of the query tree. This recursion also indicates why these predicates
should not be considered for the �L relation in the tree. For more details, also see Section 4.4,
where we describe how the output sets of query trees can be computed algorithmically.

In Example 4.14, filter predicates based on the number of child bindings are used.
Example 4.14 (QueryTreewith Set Filters):Consider theOCED L fromExample 4.7. Ad-
ditionally, consider the count-filtered query tree T2 = (V , F , r, l, box), with V = {v0, v1, v2},
r = v0 and F = {(v0, v1), (v0, v2)}. The graph (V , F) is visually represented on the right
together with the edge label names assigned by l and exemplary output tables, while box is
indicated on the left. Overall, T2 queries placed orders which were not paid fast (i.e., within
4 weeks after confirmation) and for which also no payment reminder was sent.

box(v0)
o1 : Object(orders)
e1 : Event(confirm order)

E2O(e1, o1, order)
CBS(A, 0, 0) // ∈ CHILD SETT2

v0
CBS(B, 0, 0) // ∈ CHILD SETT2

v0

Δbox(v1)
e2 : Event(pay order)

E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)
Δbox(v2)
e2 : Event(payment reminder)

E2O(e2, o1, ∗)

v0

v1 v2

A B

o1 e1
o1 e1
o2 e2
o3 e3
o4 e4

o1 e1 e2
o3 e3 e7
o3 e3 e8

o1 e1 e2
o1 e1 e5
o2 e2 e6
o3 e3 e9

32

Chapter 4. Process Queries and Constraints using Variable Bindings

Again, we annotate exemplary output tables for each node in the tree above. If bindings are
removed only by a child set predicate of a binding box but fulfill the basic predicates of it
(i.e., BASICL andATTRSL), we indicate this by including this binding with a strikethrough.
As per definition of query trees, children of the node might still contain child bindings for
crossed out binding rows. For instance, the first (removed) output row for v0 (in cyan) has a
child binding in the output set of v2. Note, however, that formally crossed-out binding rows
are not part of outL (box(v0)), but only contained in outL (box(v0) |BASICL∪ATTRSL).

Before continuing with the introduction of constraints, we first present a few ways the filters of
a binding box (e.g., inside a query tree) can be quantified, for instance by considering the number
of all possible bindings of the variables.
Definition 4.13 (Quantifying Filter Fractions): Let L be an OCED and bL = (Var,Pred)
a binding box over L. For a given event or object type, the number of instances of that
type in the log is given by the function NumInst : P(Uetype ∪ Uotype) → N0 defined as
NumInst(ts) = |{x ∈ EL ∪ OL | typeL (x) ∈ ts}|. The fraction of all possible bindings of the
involved variables satisfying the predicates is then:

f =
|outL (bL) |∏

v∈dom(Var) NumInst
(
Var(v)

)
For each object or event variable, one can also calculate what fraction of all its possible
values are instantiated by a valid binding satisfying the filters of v . In particular, given an
assigned variable v ∈ dom(Var) with ts = Var(v), this fraction is given as:

fx =
|{b(x) | b ∈ outL (bL)}|

NumInst(ts)

All of these introduced fractions hold values between 0 and 1, as they are upper bounded
exactly by the denominator.

33

Chapter 4. Process Queries and Constraints using Variable Bindings

4.3 Process Constraints using Variable Bindings

In this section, we present how a query tree (compare Definition 4.11) can be combined with a set
of constraint predicates for each tree node. The constraint predicates label the output bindings of
the node, determining if an output binding is considered violated or satisfied. This labeling can be
understood as a Boolean annotation of each output binding, indicating if the binding is violated
or satisfied. Later, in Section 4.6, we will discuss more general annotation functions. In partic-
ular, this concept is not limited to constraints or boolean annotations, but can also encompass
numerical values, like Key Performance Indicators (KPIs).
Definition 4.14 (Query Tree Constraint): Let T = (V , F , r, l, box) be a query tree over an
OCED L. The expanded tuple C = (T , constr) is called a query tree constraint under L, where
constr : V → P(PL) assigns each node u ∈ V to an additional set of predicates. For each
u ∈ V , constr (u) ⊆ BASICL ∪ ATTRSL ∪ CHILD SETT

u ∪ CONSTRC
u , where CONSTRC

u
is the collection of constraint predicates introduced next.
For a node u ∈ V , we say that an output binding b ∈ outL (box(u)) of u is satisfied if
b |= constr (u) and violated otherwise (i.e., if b 6 |= constr (u)).

It is important to note that a query tree constraint only combines a query tree with a set of
constraint predicates for each node. The semantics of the binding boxes encompassed by the
nodes of the query tree stay the same: The defined output binding sets do not change. Instead,
the constraint function additionally labels the output bindings, either marking them as allowed
behavior or forbidden. Before we introduce the new collection of predicates, CONSTRC

u , we
first present an example query tree constraint in Example 4.15, which only uses the previously
introduced constraint types.
Example 4.15 (Query Tree Constraint): Consider an example OCED L. Additionally,
consider the query tree constraint C = ((V , F , r, l, box), constr), with V = {v0, v1}, r = v0
and F = {(v0, v1)}. The graph (V , F) with the edge labels l is shown on the right, while
box with constr is presented on the left. For each v ∈ V , the set constr (v) is visually shown
in the corresponding binding box below an extra line. This constraint specifies that ev-
ery confirmed order should be paid within 4 weeks after the confirmation exactly once. In
the exemplary output binding tables shown on the right, this holds for all binding rows of
box(v0) except the last row. In particular, all output rows except the last two have exactly
one child binding in the output table for box(v1). The violation status of an output binding
of box(v0) is then simply annotated to the corresponding output row as either X or ×.

box(v0) with constr (v0)
o1 : Object(orders)
e1 : Event(confirm order)

E2O(e1, o1, ∗)

CBS(A, 1, 1) // ∈ constr (v0)

box(v1) with constr (v1)
e2 : Event(pay order)

E2O(e2, o1, ∗)
TBE(e1, e2, 0, 4w)

A

v0

v1

o1 e1 Satisfied
o1 e1 X
o2 e2 X
o3 e3 ×
o4 e4 ×

o1 e1 e2
o1 e1 e7
o2 e2 e8
o3 e3 e9
o3 e3 e10

34

Chapter 4. Process Queries and Constraints using Variable Bindings

The new constraint collection CONSTRC
u contains different predicates, which allow implement-

ing advanced logic gates and constructs. For instance, such predicates allow propagating viola-
tions for child bindings of a child node to the parent binding. Thus, constraints can also be used
in child nodes and used to derive the violation status of a parent node.

Transfering the semantics of logic gates, like OR, to binding predicate constraints requires also
handling the possibility of none or multiple child binding per input parent binding. For example,
there might be scenarios where a parent node should be satisfied for a parent binding only if all
child bindings are satisfied in the specified child node (for-all semantics). However, sometimes
scenarios might require that the parent node should be satisfied for a parent binding if at least
one child binding in the child node is satisfied (exists-semantics). To handle this complexity, we
first introduce two basic constraint predicate types representing those two options: ALLSAT
for the for-all semantics and ANYSAT for the exists semantics. For the more complex gates
NOT, OR, and AND, we then only include a for-all variant. Because query trees can be nested,
it is then still possible to model, for example, an NOT gate with exists semantics, by chaining a
simple node with the ALLSAT predicate constraint inbetween.

Next, we formally define the new predicate collection CONSTRC
u .

Definition 4.15 (Constraint Predicate Collection CONSTRC
u): Let L be an OCED and

C = ((V , F , r, l, box), constr) be a query tree constraint over L. For a node u ∈ V , CONSTRC
u

contains the following new predicate types:
• All Child Bindings Satisfied (ALL SAT): For all v ∈ V with e = (u, v) ∈ F and
l (e) = A, there is ALLSAT(A) ∈ CONSTRC

u , with for any b ∈ outL (box(u)):

b |= ALLSAT(A) ⇔ ∀b′∈outL (box (v))∧bvLb′ b′ |= constr (v)

• Any Child Binding Satisfied (ANY SAT): For all v ∈ V with e = (u, v) ∈ F and
l (e) = A, there is ANYSAT(A) ∈ CONSTRC

u , with for any b ∈ outL (box(u)):

b |= ANYSAT(A) ⇔ ∃b′∈outL (box (v))∧bvLb′ b′ |= constr (v)

• No Child Binding Satisfied (ALL NOT): For all child nodes v ∈ V with e = (u, v) ∈
F and l (e) = A, there is ALLNOT(A) ∈ CONSTRC

u , with for any b ∈ outL (box(u)):

b |= ALLNOT(A) ⇔ ∀b′∈outL (box (v))∧bvLb′ b′ 6 |= constr (v)

• For Any Child ALL SAT Holds (OR ALL): For all child nodes v1, . . . , vn ∈ V with
∀i∈n ei = (u, vi) ∈ F and l (ei) = Ai , there is ORALL({A1, . . . , An}) ∈ CONSTRC

u ,
with for any b ∈ outL (box(u)):

b |= ORALL({A1, . . . , An}) ⇔ ∃i∈n ∀b′∈outL (box (v))∧bvLb′ b′ |= constr (v)

• For All Children ALL SAT Holds (AND ALL): For all v1, . . . , vn ∈ V with ∀i∈n ei =
(u, vi) ∈ F and l (ei) = Ai , there is ANDALL({A1, . . . , An}) ∈ CONSTRC

u , with for
any b ∈ outL (box(u)):

b |= ANDALL({A1, . . . , An}) ⇔ ∀i∈n ∀b′∈outL (box (v))∧bvLb′ b′ |= constr (v)
Now that we introduced query tree constraints, we can take a look at a few example constraints
making use of these new predicates. Example 4.16 shows how the OR predicate types can be
used to model a classical OR gate, connecting two sub-constraints.

35

Chapter 4. Process Queries and Constraints using Variable Bindings

Example 4.16 (Logic ORGate):Consider an arbitrary OCED L. Given a constrained query
tree, we denote the tree structure on the right, as usual. The template indicated below, v0 im-
plements a simple logic OR-gate. On the right, exemplary output tables with the annotated
violation status are shown. Notice, that because of the for all semantics of ORALL, bind-
ings are also considered satisfied if for any child node there is no child binding in the output
set. For instance, the second output binding row for v0 (shown in magenta) is satisfied, as
there is no child binding in the output set of v2.

box(v0) with constr (v0)

ORALL({A, B})
Δbox(v1) with constr (v1)
. . .

Δbox(v2) with constr (v2)
. . .

v0

v1 v2

A B

… Satisfied

… X
… X
… ×

… Satisfied

… X
… ×
… ×

… Satisfied

… ×
… X
… ×

Next, we present an adapted version of Example 4.14 in Example 4.17. In contrast to the previous
version without constraints, this query tree constraint specifies that for all orders by customers,
where at least three payment reminders were sent out for the order, the customer should also
been banned.
Example 4.17 (Query Tree Constraint): Consider the OCED L from Example 4.7. Ad-
ditionally, consider the query tree constraint C = ((V , F , r, l, box), constr), with V =

{v0, v1, v2}, r = v0 and F = {(v0, v1), (v0, v2)}. The graph (V , F) with labels l is shown
on the right with exemplary output tables, while box with constr is shown on the left. For
each v ∈ V , the set constr (v) is visually shown in the corresponding binding box below
an extra line. The constraint specifies that if there is an order for which at least 3 payment
reminders were sent out, the customer of this order should be banned.

box(v0) with constr (v0)
o1 : Object(orders)
o2 : Object(customer)

O2O(o1, o2, customer)
CBS(A, 3,∞) // Set Filter

CBS(B, 1,∞) // Constraint (part of constr (v0))

Δbox(v1) with constr (v1)
e1 : Event(payment reminder)

E2O(e1, o1, order)

Δbox(v2) with constr (v2)
e1 : Event(ban customer)

E2O(e1, o2, customer)

v0

v1 v2

A B

o1 o2 Satisfied
o2 o1
o3 o1 X

o1 o2 e1
o3 o1 e4
o3 o1 e5
o3 o1 e6

o1 o2 e1
o2 o1 e8
o3 o1 e8

Finally, in Example 4.18, which is shown below, we present a more complex constraint consisting
of five nodes, demonstrating how an OR predicate can be used in practice.
Example 4.18 (Query Tree Constraint): Consider the OCED L from Example 4.7. Ad-
ditionally, consider the query tree constraint C = ((V , F , r, l, box), constr), with V =

36

Chapter 4. Process Queries and Constraints using Variable Bindings

{v0, v1, v2}, r = v0 and F = {(v0, v1), (v0, v2)}. The graph (V , F) with labeling l is pre-
sented on the right, while box with constr is shown on the left. For each v ∈ V , the set
constr (v) is visually shown in the corresponding binding box below an extra line. This con-
straint specifies that an order should be either paid fast after confirmation (i.e., within 4
weeks) or at least one payment reminder should be sent out for it.

box(v0) with constr (v0)
o1 : Object(orders)

ORALL(A, C)

Δbox(v1) with constr (v1)
e1 : Event(confirm order)

E2O(e1, o1, order)

CBS(B, 1, 1)

Δbox(v2) with constr (v2)
e2 : Event(pay order)

E2O(e2, o2, order)
TBE(e1, e2, 0, 4w)

Δbox(v3) with constr (v3)

CBS(D, 1,∞)

Δbox(v4) with constr (v4)
e1 : Event(payment reminder)

E2O(e1, o1, order)

v0

v1

v2

v3

v4

A

B

C

D

Finally, we also want to quantify the filter and violation percentages of nodes in a query tree
constraint.

Definition 4.16 (Quantifying Violation Fractions): Let L be an OCED. For a binding box
bL under L, the number of output bindings is n = |outL (bL) |.
Considering an additional set of constraint predicates X ⊆ PL for bL, we can also calculate
the violation count and percentage. The violation count is cv = |{b ∈ outL (bL) | b 6 |= X }|.
Similarly, the violation fraction (often represented as a percentage) is qv =

cv
n
.

For instance, consider the simple query tree constraint presented in Example 4.19. In this con-
straint, the root node is violated in cv = 443 out of the n = 2000 total possible bindings
of orders objects in the OCED from [36]. In particular, for 443 orders there is at least one
payment reminder event. Thus, we can calculate the violation fraction of the root node as
443
2000 ≈ 22.15%.

Example 4.19 (Simple Constraint for Calculating Violation Percentage): Consider
the query tree constraint shown below. The root node is satisfied for bindings of orders
objects if there is no event of type payment reminder associated with it.

37

Chapter 4. Process Queries and Constraints using Variable Bindings

box(v0) with constr (v0)
o1 : Object(orders)

CBS(A, 0, 0)

box(v1) with constr (v1)
e1 : Event(payment reminder)

E2O(e1, o1, ∗)

A

v0

v1

When we discuss an overall query tree constraint as being satisfied or violated, we commonly
refer to the violation percentage of its root node. In contrast, the violation percentage of non-root
nodes should not be considered directly, as it can be propagated up to the root node in different
ways. For instance, when using the logic gateNOTALL, a high violation percentages of a child
node might yield a low violation percentage at the parent node.

Our approach can also be adapted to global scenarios where constraints should be formulated
not for individual queried bindings but the overall OCED. For that, the root node can simply
not introduce any variables, resulting in only the empty binding as an output, which can then
represent the violation status of the complete OCED as a whole. For instance, consider Exam-
ple 4.20 which can be considered globally satisfied if there are at least 10 employees in the whole
considered OCED.
Example 4.20 (Global OCED Constraint): Consider the query tree constraint presented
below. As the root node does not query any object or event variables and also does not have
any predicates, it only contains the empty binding {} as a single output binding. This is
convenient to represent global constraints for the consideredOCED as awhole. In particular,
this query tree node is satisfied (i.e., the empty binding is satisfied for the root node) when
there are at least 10 employees objects in the considered OCED.

box(v0) with constr (v0)

CBS(A, 10,∞)

box(v1) with constr (v1)
o1 : Object(employees)

A

v0

v1

The addition of constraints finalizes our main query and constraint approach. Next, we will
present further details regarding the efficient evaluation of binding queries, automatic discovery
of constraints and extensions to our approach. In those, we sometimes use an alternative query
tree constraint visualization, to further ease readability and represent themmore compactly. This
alternative representation is also used in the frontend implementation of the tool in Chapter 5.
Figure 4.1 shows how this alternative visualization looks like. For instance, predicate types like
E2O and O2O are represented using a link icon between the variables names. Note, that as the
variables already have a clear type (i.e., are either object or event variable), there is no need to
explicitly distinguish between both types of relationship predicate, as they are already indicated
by the type of the involved variables. Also, the names of the logic constraint predicates are
slightly shortened. In particular, ALLSAT is simply called SAT while ANYSAT is called ANY.

38

Chapter 4. Process Queries and Constraints using Variable Bindings

Moreover, ALLNOT, ORALL, and ANDALL are shown as NOT, OR and AND, respectively.

A B
v0

v1 v2

box(v0) with constr (v0)
o1 : Object(customers)
o2 : Object(orders)
e1 : Event(confirm order)
e2 : Event(pay order)

E2O(e1, o2, ∗)
O2O(e1, o2, ∗)
TBE(e1, e2, 0, 4w)
OAR(o2, price, 100, 1000, SOMETIME)
E2O(e2, o2, ∗)
CBPS(A, o1, 1, 10)

CBS(A, 1, 10)
CBPE(A, o3, B, o3)

box(v1) with constr (v1)
o3 : Object(items)

O2O(e2, o3, ∗)

box(v2) with constr (v2)
o3 : Object(items)

E2O(e1, o3, ∗)

A B

Object Variables
 o1: customers
 o2: orders

Event Variables
 e1: confirm order

 e2: pay order

Filters

 o2 e1

 o1 o2

 e1 e2 0 - 4w

 o2.price 100 � 1000 (sometime)

 o2 e2

1 � |A[o1]| � 10

Constraints

1 � |A| � 10

A� o3]= B� o3]

454

0%
0

Object Variables
 o3: items

Event Variables

Filters

 o3 e1

Constraints

1122Object Variables
 o3: items

Event Variables

Filters

 o2 o3

Constraints

1122

Figure 4.1: The formal representation of a query tree constraint, on the left, with the equivalent
fully graphical representation on the right. The presented kitchen sink example constraint was
constructed to contain many predicate types, to show their representation, but has no intended
semantic meaning. When evaluated on the OCED from [36], the root node yields 454 output
bindings and is never violated, which is shown on the right top and bottom of the root node. As
the two child nodes do not contain any constraint predicates, no violation status is shown for
them.

In the next sections, we will discuss more details related to our method. First, we start by de-
scribing how the declarative definitions given here can be adapted algorithmically.

39

Chapter 4. Process Queries and Constraints using Variable Bindings

4.4 Efficiently Evaluating Binding Queries for OCED

In this section, we describe how to efficiently evaluate the query and constraint concepts intro-
duced previously. Here, we do not describe implementation details (see Chapter 5 for that), but
rather the general technique. As such, this section answers RQ4 and encompasses the research
goal RG5 by providing algorithms allowing for efficient evaluation of declarative queries and
constraints, corresponding to our contribution CT3.

First, we describe how the evaluation of the declarative approach presented in the previous sec-
tions can be translated to a recursive algorithm. The recursive algorithm takes a query tree
constraint and an OCED as input and computes all output bindings for each node of the tree and
labels each of them according to the defined constraint predicates. Of course, the same approach
can also be used to evaluate query trees without constraints, by simply assuming an empty con-
straint set for each node. Secondly, we describe a substep of this described algorithm, in which
an input binding (i.e., a binding of the parent node) is expanded to the output set of a child node
in more detail.

4.4.1 Recursive Binding Query Algorithm

In the following, we present a recursive algorithm which, given a query tree (optionally with ad-
ditional children filter predicates and constraint predicates), calculates the set of output bindings
for each node, optionally with constraint information. The algorithm is sketched in Code 3 as
Python-like pseudocode. The function evaluate is implemented for tree nodes of a query tree
constraint and takes a parent binding as an input parameter. Initially, the evaluate function of
the root node is called with the (implicit) empty parent binding (i.e., {}). The evaluate function
then consists of three main steps:

1. Expand the input parent binding (line 2, considering BASICL ∪ ATTRSL), and for each
resulting binding…

2. … evaluate all children and check child set constraints (lines 6 - 11, based onCHILD SETT
u).

3. … check if the constraints are satisfied (line 12, based on constr (u)).

1 def evaluate(self: TreeNode, parent_binding: Binding):
2 expanded = self.expand(parent_binding) # Considers BASICL ∪ ATTRSL
3 all_res = []
4 for b in expanded:
5 res_per_child = {}
6 for c in self.children:
7 c_res = c.evaluate(b)
8 res_per_child[c.name] = c_res
9 all_res.extend(c_res)

10 # Next, check predicates in CHILD SETT
self

11 if self.passes_child_filters(res_per_child):
12 viol = self.get_violated_constraints(b,res_per_child)
13 all_res.push([self.name,b,viol])
14 return all_res

Code 3: Python-like pseudo code sketching a recursive algorithm to evaluate query trees.

40

Chapter 4. Process Queries and Constraints using Variable Bindings

We first describe the algorithm and the inner subroutines and then argue that the algorithm in-
deed correctly computes the labeled output bindings of each binding box. The algorithm corre-
sponds to the evaluate function implemented for the nodes in a query tree constraint. Initially,
the evaluate function of the root node of the tree is called with the implicit empty parent bind-
ing {}. In the function, the parent binding is first expanded to superset of output bindings of
the current node, based on only predicates in BASICL and ATTRSL. This output set is indeed a
superset of the actual output bindings of the node u, as the predicates fromCHILD SETT

u are not
yet considered. Next, each binding b of this superset of output binding is considered on its own:
Each child node of u is evaluated recursively and the results are saved. After that, based on the
obtained child results, it can be checked if the binding b satisfies the predicates in CHILD SETT

u
which were not yet considered. If this is the case, the violation predicates are checked, based on
b and the child results, and the obtained information is added to the overall output. If not, i.e., b
is not part of the actual output set of u, this is not done. Either way, the recursive results of the
children are also added to the overall result, which is returned at the end.

Lemma 4.3 (Recursive Algorithm Computes Correct Output Bindings): We want to
show that the recursive algorithm from Code 3 indeed computes the output sets, as formally
described in Section 4.2. Let L be an OCED and let C = ((V , F , r, l, box), constr) be a query
tree constraint. From Lemma 4.2, we know that for two binding boxes a, b ∈ BOXL with
a �L b and any binding b ∈ BL with b |= b, there exists a unique parent binding a ∈ BL
with a vL b and a |= a. Note, that for two nodes u, v ∈ V with (u, v) ∈ F , it only holds that
box(u) |BASICL∪ATTRSL �L box(v) |BASICL∪ATTRSL , and the binding boxes might additionally
contain predicates from CHILD SETC

u . However, in the recursive algorithm from Code 3
child bindings are constructed and evaluated, even if the parent binding does not pass the
child filter predicates (cf. line 9). For every output binding b ∈ BL of a node v ∈ V , we can
construct a sequence c = 〈(b1, r), . . . , (b, v)〉 of bindings and corresponding nodes, such
that the nodes (i.e., 〈r, . . . , v〉) correspond to a path in the tree (V , F) and all bindings (i.e.,
〈b1, . . . , b〉, where b1 |= box(r)) are in a vL relation. This sequence then corresponds to
the recursive calls of the evaluate function in Code 3. Thus, inductively clearly all output
bindings of all nodes are constructed and returned. Furthermore, as bindings are recursively
expanded and filtered based on the provided predicates, there are also no output bindings
constructed and returned for nodes, which are not part of their output set. Thus, overall the
recursive algorithm sketched in Code 3 computes exactly the output of the nested querying
of a query tree, formalized before.

The subroutines passes_child_filters and get_violated_constraints are rather triv-
ial and do not require extra attention. The binding expansion step (corresponding to the expand
function call in line 2 from Code 3), however, is more involved and of particular interest. Next,
we zoom in on this binding expansion step. As we will see, a naive implementation quickly runs
into huge scalability problems. Thus, we also present more intelligent solutions that enables
efficient expansion of bindings in practice.

4.4.2 Expanding Bindings

The binding expansion step constructs the (super)set of the child bindings of a node u based on
a parent binding. In particular, given parent binding b ∈ BL, the set {b′ ∈ BL | b vL b′ ∧ b′ |=
box(u) |BASICL∪ATTRSL } is constructed. Intuitively, this involves first constructing a child binding
for all possible combinations of the newly bound variables and afterwards filtering this set based
on the basic and attribute-filtering predicates of box(u).

41

Chapter 4. Process Queries and Constraints using Variable Bindings

We use the example order management OCED from [36] to quantify how well different ap-
proaches filter out bindings early or prevent the construction of unnecessary bindings. Moreover,
we consider the constraint from Figure 4.2 as a running example for amore complex query.

A

v0

v1

box(v0) with constr (v0)
o1 : Object(customers)
o2 : Object(orders)
o3 : Object(orders)
e2 : Event(place order)
e3 : Event(place order)

E2O(e2, o2, ∗) // s1
E2O(e3, o3, ∗) // s2
TBE(e2, e3, 0.01s,∞) // s3
O2O(e1, o2, ∗) // s4
O2O(e1, o3, ∗) // s5

ALLSAT(A)

box(v1) with constr (v1)
e4 : Event(confirm order)
e5 : Event(confirm order)

E2O(e4, o2, ∗) // s6
E2O(e5, o3, ∗) // s7

TBE(e4, e5, 0.01s,∞)

A

Object Variables
 o1: customers

 o2: orders

 o3: orders

Event Variables
 e2: place order

 e3: place order

Filters

 o2 e2

 o3 e3

 e2 e3 0.01s - ∞

 o1 o2

 o1 o3

Constraints

SAT�A�

133555

0.3%
397

Object Variables

Event Variables
 e4: confirm order

 e5: confirm order

Filters

 o2 e4

 o3 e5

Constraints

 e4 e5 0.01s - ∞

133555

0.3%
397

Figure 4.2: A query tree constraint, specifying that two orders placed by the same customer
should be confirmed in the order they were placed in. A formal representation is shown on the
left and the graphical representation inside the tool UI on the right. In the formal representation,
the basic predicates in box(v0) and box(v1) are labeled s1 through s7.

In the following, we first demonstrate the problem of evaluating queries by describing the most
naive approach to computing output bindings for a binding box. Next, we show how this naive
approach can be improved using the simple idea of filtering early. However, as we will see, this
improvement is still not enough to make evaluating more complex queries feasible. After that,
we describe a more sophisticated approach which exploits the types of filter predicates available
in BASICL and can also handle complex queries.

Naive Approach

A very naive way to bind all the variables of a binding box would be to simply expand the input
binding to one output binding for each possible combination of values. In the example OCED
from [36], there are 2000 order objects, 2000 place order events and 15 customer objects. Thus,
for box(v0) from Figure 4.2, this would mean constructing 2000 · 2000 · 2000 · 2000 · 15 =

42

Chapter 4. Process Queries and Constraints using Variable Bindings

240, 000, 000, 000, 000 = 2.4 · 1014 (in words: 240 trillion) bindings for the implicit empty parent
binding. Clearly, first constructing all these bindings and then filtering them down, based on the
binding predicates, is infeasible.

Early Filtering

Instead, a better approach would be to filter out bindings as early as possible. For simplicity,
first assume some given sequential order of the variables. After binding a new variable, all filter
predicates only involving variables already bound to values can be evaluated to determine if the
bindings should be kept or discarded. For example, assuming an ordering o2, e2, o3, e3, o1 of
the involved variables, after binding o2 and e2, we can already filter out all bindings, in which
they are not associated with each other. Figure 4.3 shows the encountered number of bindings in
each step for the example query at Figure 4.2 when using this early filtering technique, using two
different variable orderings. Both scenarios already reduce the maximum number of bindings
to consider significantly. The order of variables influences the maximum number of bindings to
consider in a step. Later, we will also describe an approach to identify well-performing binding
orders in more detail.

Index Step #Bindings
0 Bind o2 2000
1 Bind e2 4000000
2 Filter (s1) 2000
3 Bind o3 4000000
4 Bind e3 8000000000
5 Filter (s2, s3) 1999000
6 Bind o1 29985000
7 Filter (s4, s5) 133555 0 1 2 3 4 5 6 7

100

105

1010

1015

Step Index

#B
in
di
ng

s[
lo
g.
]

Number of Bindings per Step

Naive Approach

(a) Number of bindings per step for ordering o2, e2, o3, e3, o1

Index Step #Bindings
0 Bind o1 15
1 Bind o2 30000
2 Filter (s4) 2000
3 Bind e2 4000000
4 Filter (s1) 2000
5 Bind o3 4000000
6 Filter (s5) 269110
7 Bind e3 538220000
8 Filter (s2, s3) 133555 0 1 2 3 4 5 6 7 8

100

105

1010

1015

Step Index

#B
in
di
ng

s[
lo
g.
]

Number of Bindings per Step

Naive Approach

(b) Number of bindings per step for ordering o1, o2, e2, o3, e3

Figure 4.3: Number of bindings after each step, assuming the given order for binding the vari-
ables. Predicate filters are evaluated as soon as all involved variables are bound. The plots show
the number of bindings for each step with a logarithmic y-axis. For both orderings, the maximum
number of encountered bindings is significantly lower than in the naive approach. Moreover, the
ordering on the bottom involves constructing fewer bindings than the one at the top.

43

Chapter 4. Process Queries and Constraints using Variable Bindings

Intelligent Binding Expansion During Construction

While early filtering reduces the maximum number of bindings one has to consider significantly,
it still constructs a huge number of unneeded bindings. Next, we describe a more sophisticated
approach, which combines early filtering with only expanding necessary variable combinations
during construction. To achieve this, we leverage the nature of most of the binding predicates
in BASICL: They correspond to object-to-object or event-to-object relationships in the OCED.
Thus, if one of the variables involved in the predicate is already bound, we can restrict binding
the other value to only those values that are in the specified relationship with the already bound
variable value. For example, when expanding bindings by binding order objects o2 based on an
already bound customer o1, it suffices to consider all orders which are contained in an object-
to-object relationship with the value of o1. These related values can easily be precomputed as
an index when loading an OCED.

To approach this formally, we describe the Relationship Graph of an OCED. It containts all ele-
ments in the OCED (i.e., all objects and events) as nodes with edges between two elements, if
there is a relation between them in the OCED.
Definition 4.17 (OCED Relationship Graph): Let L = (E,O, eaval, oaval) be an OCED.
For a given qualifier q ∈ Uqual , we define a relation →q

L between elements of OL ∪ EL.
Given a, b ∈ OL ∪ EL, we define a →q

L b to hold if and only if:
• a, b ∈ OL and (q, b) ∈ oavala (objects)
• a ∈ EL, b ∈ OL and (q, b) ∈ eavala (objects)

We can construct a OCED Relationship Graph consists of the nodes VL = OL ∪ EL and undi-
rected edges FL =

{
{x, y} | x, y ∈ V ∧ ∃q∈Uqual

x →q
L y

}
.

For each edge, we can also construct the set of qualifiers and source node supporting this
edge. For that, we introduce a function qual : FL → P(VL × Uqual) defined as qualL (e) ={
(x, q) ∈ Uqual | x ∈ e ∧ y ∈ e ∧ (x ≠ y ∨ |e | = 1) ∧ x →q

L y
}
.

Typically, it is interesting to consider only a subgraph of the OCED Relationship Graph, centered
around a specified node and only containing edges related to this node. Next, we present and
visualize an example OCED Relationship subgraph.
Example 4.21 (OCED Relationship Subgraph): Below, we show an OCED Relationship
Graph subgraph for a customer o1. The set of qualifiers given by qual is annotated on the
edges. Dotted arrows indicate some edges that are not shown in this subgraph. For instance,
the subgraph shows object-to-object relations between the orders o2 and o3 and the customer
o1, as well as multiple event-to-object relationships.

{ (
o 2
, p
la
ce
s)
}

{(o
3
, p
l
a
c
e
s) }

{ (e4 , banned) }{ (e5, messaged) }

{ (e2
, cu

sto
mer

) }

{(
e 4
, c
u
s
t
o
m
e
r
) }

e4

e5

e2

o2 e3

o3

o1

Intuitively, if a variable is already bound to a value a before and a new variable should be bound,
for which there is a filter predicate specifying a relationship with a, we only need to consider
the neighbors of a in the OCED Relationship Graph. In particular, a similiar graph, based on

44

Chapter 4. Process Queries and Constraints using Variable Bindings

relations, can also be constructed based on the variables involved in the binding box. Assume
that we expand a binding box aL = (Var,Pred) over L, based on a parent binding b. In the
expanded output bindings, the variables N = dom(Var) should be bound to values. Of which,
there might be some variables N̂ = dom(b) already bound by the parent binding. Additionally,
consider the set of basic binding predicates P = Pred∩BASICL in aL. We can construct a graph
consisting of the variable in N with edges between them, indicating that the source can be bound
from other target variable’s value based on the predicates in P .
Definition 4.18 (Variable Dependency Graph): Let L be an OCED and V ⊆ UevVar ∪
UobVar . Additionally, consider a set of basic predicates P ⊆ BASICL. The graph (V , F) is
the variable dependency graph of V and P , with:

F =
{
(v1, v2) ∈ V × V | ∃p∈P ∃q∈Uqual∪{∗} p = E2O(v1, v2, q) ∨ p = O2O(v1, v2, q)

∨ p = E2O(v2, v1, q) ∨ p = O2O(v2, v1, q)
}

An edge (v1, v2) ∈ F corresponds to the possibility to bind values to v2 based on a value of
the variable v1. Notice, that here F is essentially symmetric, as we assume that the previously
mentioned relationship graphs are constructed in a way which allows binding variables in
both relation directions. However, in general, for example when considering expansions for
other types of predicate, the set of edges might also be non-symmetric.

In Figure 4.4, we present such variable dependency graphs for the two nodes of the considered
example shown in Figure 4.2. When expanding the implicit empty parent binding for the root
node, first binding o1 seems to make intuitively the most sense, as two other variables can be
bound based on this values (i.e., o2 and o3).

s5
s4

s1
s2

o1

o2

e2 e3

o3

s5
s4

s1 s2
s6 s7

o1

o2

e2

e4 e5

e3

o3

Figure 4.4: The variable dependency graph for the constraint shown in Figure 4.2. On the left,
for the root node with an implicit empty parent binding. On the right, for the leaf node with a
parent binding which already binds o1, o2, o3, e2 and e3, which are thus shown in gray. The
new variables e4 and e5 can easily be bound based on the already bound variables o2 and o3,
respectively, using an appropriate pre-computed index for the OCED relations.

Variables that can be bound based on other already bound variables should be selected first.
Otherwise, for a more intelligent binding expansion approach, we propose iteratively picking the
next variable to bind, based on the number of other, unbound variables that can be bound based
on it, as indicated in the variable dependency graph. Of course, frequency information from the
OCED, e.g., determining the number of possible values for a variable or the average number of
relations of an object or event type, could be used to further enhance this heuristic.

Later, in Chapter 5, we provide more details about the actual implementation of those ideas in the
OCPQ tool. Afterwards, in Chapter 6, we also evaluate the runtime performance of the OCPQ
tool for executing queries or constraints across different OCEDs.

45

Chapter 4. Process Queries and Constraints using Variable Bindings

4.5 Discovering Constraints from OCED

In this section, we present how certain types of query tree constraints can be automatically dis-
covered based on input OCED. As such, we address RQ5, investigating the automatic discovery
of constraints, and fulfill RG6, as we present techniques for this automatic constraint discovery.
More details on the actual implemented algorithms will be presented later in Chapter 5.

Automatic discovery is a well-studied challenging problem in process mining [38]. Typically,
the goal is to discover process models in the form of Petri nets or BPMN models based on input
event logs of the process, such that the discovered model is a good description of the underlying
process [38]. Different criteria, like fitness and precision, need to be considered when evaluating
if the discovered model is of good quality. For discovering constraints, similar considerations are
required. Additionally, our developed constraint model focuses explicitly on high expressiveness
and object-centricity, both of which render general discovery of any type of constraint that can
be modeled using our approach infeasible. Instead, discovery needs to focus on specific types of
constraints. In particular, focus should lay on types of constraints which are commonly relevant
for processes. In the following, we will first present approaches to automatically discover the
following two simple types of constraints, both with high practical relevance:

1. Count Constraints, which constrain the number of objects or events of one type (t ′)
related to instances of a second type (t). For example, the count constraint “Exactly one
pay order event per object of type orders” involves the event type t ′ = pay order
and the object type t = orders.

2. Eventually-Follows Constraints, which constrain for each object of a specified object
type (ot), after an event of one type (t) associated with the object, there should be an event
of the second type (t ′) associated with the object within a specified duration. For example,
for ot = orders, t = confirm order and t ′ = pay order a constraint could be: “For
all orders and confirm order events there is at least one pay order event related to
the order at most ≈ 5 weeks after the confirmation”.

A

Object Variables
 o1: orders

Event Variables

Filters

Constraints

|A| � 1

2000

0%
0

Object Variables

Event Variables
 e2: pay order

Filters

 o1 e2

Constraints

2000

A

Object Variables
 o1: orders

Event Variables
 e2: confirm order

Filters

 o1 e2

Constraints

|A| � 1

2000

6.25%
125

Object Variables

Event Variables
 e3: pay order

Filters

 o1 e3

 e2 e3 0 - 5.13w

Constraints

1875

Figure 4.5: An example count constraint (on the left) and eventually-follows constraint (on the
right) corresponding to the textual constraint descriptions given above. Both of these constraints
were automatically discovered based on the example order management OCED from [36].

46

Chapter 4. Process Queries and Constraints using Variable Bindings

Afterwards, we also present a more sophisticated and general approach for combining (simple)
discovered constraint constructs to more complex ones. For instance, this allows discovering
OR-constructs like “An order is either paid fast (i.e., within ≈ 1.3 weeks) after confirmation or at
least one payment reminder is sent out”. Figure 4.8 shows such an automatically discovered OR
constraint, incorporating both count and eventually-follows elements.

4.5.1 Discovering Count Constraints

Let L = (E,O, eaval, oaval) be an OCED. We define the following function, which map an event
or object type to the instances of that type in L:

• evinstL : Uetype → P(E) with evinstL (et) = {e ∈ E | eavale (activity) = et}

• obinstL : Uotype → P(O) with obinstL (ot) = {o ∈ O | oavalo (type) = ot}

• instL :
(
Uotype ∪Uetype

)
→ (P(O) ∪ P(E)) with instL (t) =

{
evinstL (t), if t ∈ Uetype

obinstL (t), if t ∈ Uotype

In particular, this also allows identifying the sets of events and object types which are occurring
in L as ETL = {et ∈ Uetype | evinstL (et) ≠ ∅} and OTL = {ot ∈ Uotype | obinstL (ot) ≠ ∅}.

Consider a type t ∈ OTL ∪ ETL in L. For all instances of type t in L, the number of instances of
that type associated with instances of another type t ′ ∈ OTL ∪ ETL can be counted, resulting in
a multiset of counts. Instances are considered associated with each other, if they are linked by
the object attribute and thus through the obj∗L function. The direction of this connection is also
considered. For example, when considering t = pay order ∈ ETL, an actual pay order event
e ∈ E is expected to be associated with exactly one object instance o ∈ O of type orders, where
then o ∈ obj∗L (e). For each combination of types t, t ′, we consider two multisets, counting the
number of instances of t ′ associated with each instance of t . The functions #n

L and #r
L assign a

combination of types to these multisets, where #n
L considers the normal relation direction and

#r
L the reversed one.

#n
L,#

r
L : (OTL ∪ ETL) × (OTL ∪ ETL) → B(N0)

#n (t, t ′) =
[��{i′ ∈ instL (t ′) | i′ ∈ obj∗L (i)

}�� ���� i ∈ instL (t)
]

#r (t, t ′) =
[��{i′ ∈ instL (t ′) | i ∈ obj∗L (i′)

}�� ���� i ∈ instL (t)
]

Example 4.22 (Count Multisets): Consider an example order management OCED L with
instL (orders) = {o1, o2, o3} where o1 and o2 are associated with 5 objects of type items
each and o3 is associated with 3 objects of type items. For t = orders and t ′ = items
then #n (t, t ′) =

[
3, 5, 5

]
would be the count multiset for the normal relation direction.

Note, that these definitions are very general for simplicity, even though there are some uninter-
esting type combinations. For instance, for two event types t, t ′ ∈ ETL, clearly #n

L (t, t ′) only
contains zeros, as there are no direct event-to-event relations in our definition of OCED.

The assigned multisets can be used to efficiently mine count constraints. In particular, for each
combination t, t ′ ∈ ETL ∪ OTL, a direction d ∈ {n, r} and a given threshold 0 ≤ p ≤ 1 multiple
different count ranges, each defined by their two bounds cmin, cmax ∈ N∞

0 with cmin ≤ cmax can

47

Chapter 4. Process Queries and Constraints using Variable Bindings

be identified such that the fraction of counts inside this range (cfitL defined below) is at least as
large as p (i.e., cfitL (t, t ′, d, cmin, cmax) ≥ p).

cfitL (t, t ′, d, cmin, cmax) =
�� [c ∈ #d

L (t, t ′) | cmin ≤ c ≤ cmax
] ����#d

L (t, t ′)
��

ConstructingConstraints Wewill later present different concepts to select interesting bounds
cmin, cmax ∈ N∞

0 . First, we show how a query tree constraint can be constructed based on the iden-
tified values t, t ′, d, cmin, cmax . We omit a full formal definition here for simplicity, and instead
only provide a brief description: For each identified combination of the values t, t ′, d, cmin, cmax a
query tree constraint can be constructed using two nodes: The first one binds an event or object
variable to values of type t and contains a constraint for the number of child bindings in the
second node, constraining them to be between cmin and cmax . The second node binds instances
of type t ′ using a filter predicate of type E2O or O2O with t and t ′ (or flipped if d = r).
Example 4.23 (Constructing Count Constraint Tree): Let L be an OCED from an order
management process. Consider the count configuration t = orders, t ′ = pay order,
cmin = cmax = 1 and d = r . Below, we visualize the query tree constraint constructed for
these values, C = ((V , F , r, l, box), constr) with V = {v0, v1}, F = {(v0, v1)}, and r = v0.

box(v0) with constr (v0)
o1 : Object(orders)

|A| = 1

box(v1) with constr (v1)
e2 : Event(pay order)

E2O(e2, o1, ∗)

A

v0

v1

Selecting Interesting Bounds Next, we sketch three approaches to select the count interval
bounds cmin, cmax ∈ N∞

0 for given two types t, t ∈ OTL ∪ ETL, a direction-mode d ∈ {n, r}, and
fitness threshold 0 ≤ p ≤ 1. All are based on selecting an initial small interval (i.e., cmin = cmax)
and then increasing it to achieve the specified threshold p.

• Centered around mean: First, identify the mean x̄ = 1
n · ∑n

i=1 xi of the values #d
L (t, t ′) =

[x1, . . . , xn]. Next, select the minimal r ∈ R≥0 such that for the bounds cmin = max{dx̄ −
re, 0} and cmax = bx̄ + rc it holds that cfitL (t, t ′, d, cmin, cmax) ≥ p.

• Increasing from low: Select the minimal k ∈ N0 such that for the bounds cmin = 0 and
cmax = k it holds that cfitL (t, t ′, d, cmin, cmax) ≥ p.

• Decreasing from high: Select the maximal k ∈ N0 such that for the bounds cmin = k and
cmax = ∞ it holds that cfitL (t, t ′, d, cmin, cmax) ≥ p.

Figure 4.6 shows a plot of an example count multiset, with intervals identified for all three se-
lection approaches. In practice, not all identified intervals correspond to interesting count con-
straints. Filtering can be used to select only desired bounds. For example, filtering out interval
bounds with perfect fitness for an event log with known undesired behavior.

48

Chapter 4. Process Queries and Constraints using Variable Bindings

1 2 3 4 5 6 7 8 9 10 11 12

Count

Figure 4.6: An example count multiset, sketching the identification of count bounds in multiple
colors on the bottom. The multiset is shown as a scatter plot with randomized y values for
visualization. The following count intervals can be derived based on the three identification
approaches: centered around mean (in green): cmin = 3, cmax = 6; increasing from low (in blue):
cmin = 0, cmax = 4; and decreasing from high (in red): cmin = 4, cmax = ∞.

4.5.2 Discovering Eventually-Follows Constraints

Next, we describe how to discover eventually-follows constraints based on an input OCED. It
works similarly to the identification of count constraints: First gathering a multiset of the small-
est durations between two event types both associated with a common object of a specified object
type, and afterwards identifying a duration interval based on this multiset.

First, fix an object type ot ∈ OTL for which eventually-follows constraints should be mined.
Then, for all combinations et, et ′ ∈ ETL of event types, we again construct a multiset of the
observed values for each o ∈ inst(ot). In particular, for each e ∈ inst(et) with o ∈ objsL (e),
the earliest event e′ ∈ inst(et) (w.r.t. timeL (e′)) with o ∈ objL (e′) and timeL (e) ≥ timeL (e′) as
well as e ≠ e′, if any, is identified and the duration difference timeL (e′) − timeL (e) (if there is
such an e′) or ∞ (if not) is added to the multiset for ot, et, et ′. Formally, we first define the time
difference mdiffL (o, e, et ′) to the earliest next event of a specified type et ′ ∈ ETL for a reference
event e ∈ E and an object o ∈ O. Based on this, we then introduce the function efmL, which
assigns a combination of types ot, et, et ′ to the corresponding eventually-follows time duration
multiset.

mdiffL : O × E × ETL → T∞

mdiffL (o, e, et ′) = min
{
timeL (e′) − timeL (e) | e′ ∈ inst(et ′) ∧ o ∈ objL (e′)

∧ timeL (e) ≤ timeL (e′)
}

where we define min ∅ = ∞ for convenience

efmL : OTL × ETL × ETL → B(T∞)

efmL (ot, et, et ′) =
[
mdiffL (o, e, et ′)

���� i ∈ inst(ot) ∧ e ∈ inst(et) ∧ o ∈ objL (e)
]

Example 4.24 (EF Durations Multiset): Let L be an order management OCED. Consider
ot = orders and the event types et = confirm order and et ′ = payment reminder.
Again, assume that instL (ot) = {o1, o2, o3, o4}, each associated with exactly one event of
type et , i.e., e1, e2, e3, e4, each. Additionally, assume that there are no events of type et ′

associated with o1 and o2, one event of type et ′, e5, associated with o1 and two events e6

49

Chapter 4. Process Queries and Constraints using Variable Bindings

and e7 of type et ′ associated with o1. Assume, that the time between events of interest
are the following: timeL (e5) − timeL (e3) = 2 days, timeL (e6) − timeL (e4) = 3 days, and
timeL (e7) − timeL (e4) = 4 days. Then efmL (ot, et, et ′) =

[
∞,∞, 2 days, 3 days

]
. Notice, that

for this example there is no event of type et ′ related to o1 or o2 after the e1 and e2 events of
type et , respectively, leading to the ∞ values in the multiset.

Note that we again formally consider all combination of types (ot, et, et ′) ∈ OTL × ETL × ETL.
In practice, for at least some of these combinations the multiset is expected to be uninteresting
(e.g., empty or only consisting of ∞). Based on the gathered multiset of delays, interval bounds
are identified, similar to the count constraints presented before. However, for eventually-follows
constraints we only consider the Increasing from low interval bound selection method, as com-
monly constraints specifying a maximum delay between events are of particular interest. Gen-
erally, the other selection methods could, of course, also be adapted for the eventually-follows
use case.

The function effitL, defined below, maps a type configuration (ot, et, et ′) ∈ OTL × ETL × ETL and
a maximum duration bound dmax ∈ T to the fraction of fitting durations (i.e., that are ≤ dmax).
Given a fitness threshold 0 ≤ p ≤ 1, an eventually-follows constraint candidate can then be
constructed for (ot, et, et ′) ∈ OTL × ETL × ETL by identifying the smallest dmax ∈ T (if it exists)
where effitL (ot, et, et ′, dmax) ≥ p.

effitL (ot, et, et ′, dmax) =
�� [d ∈ efmL (ot, et, et ′) | d ≤ dmax

] ��
| efmL (ot, et, et ′) |

Constructing a query tree constraint based on the identified parameters ot , et , et ′ and dmax is
straightforward. In Example 4.25, we present an example construction.
Example 4.25 (AutomaticallyDiscover EFConstraint): Let L again be an ordermanage-
ment OCED. For the eventually-follows configuration ot = orders, et = confirm order,
et ′ = pay order and dmax ≈ 5 weeks. Below, we visualize the query tree constraints con-
structed for these values, T = ((V , F , r, l, box), constr) with V = {v0, v1} F = {(v0, v1)} and
r = v0.

box(v0) with constr (v0)
o1 : Object(orders)
e2 : Event(confirm order)

E2O(e2, o1, ∗)

|A| ≥ 1

box(v1) with constr (v1)
e3 : Event(pay order)

E2O(e3, o1, ∗)
TBE(e2, e3, 0, 5.13w)

A

v0

v1

4.5.3 Discovering Complex Constraints

So far, we presented approaches to mine simple count and eventually-follows constraints. Next,
we present a way to combine such simpler constraints to more complex, interesting constraints.
For instance, this allows discovering the disjunctions of subconstraints.

50

Chapter 4. Process Queries and Constraints using Variable Bindings

In essence, any combination of constraints can be combined, for instance through their disjunc-
tion. As an example, consider the OR-constraint “There are at least 1500 orders or at least 3000
items in total”, which is the disjunction of the constraints “There are at least 1500 orders in total”
and “There are at least 3000 items in total”. Oftentimes, however, simple combination of full con-
straints are not of particular interest, as the combination is at the global (i.e., log) level. Instead,
more interesting combined constraints are often specified for a shared input binding. For in-
stance, consider the constraint “For every customer, there are at most three payment reminder
events or at least one ban customer event”. Here, both subconstraints (“at most three payment
reminder events” and “at least one ban customer event”) are based on the same input binding
context (i.e., the “customer” object).

Such composited constraints with a common parent binding context, can be constructed based
on two or more constraints with common object or event variables of the same type. In the
following, we focus on composited constraints with exactly one shared object or event variable
(with the same type), as they are simple to understand and construct.

X

Object Variables
 o1: orders

Event Variables
 e3: confirm order

Filters

 o1 e3

Constraints

|X| � 1

2000

40.35%
807

Object Variables

Event Variables
 e4: pay order

Filters

 o1 e4

 e3 e4 0 - 1.3w

Constraints

1193

Y

Object Variables
 o1: orders

Event Variables

Filters

Constraints

|Y| � 1

2000

77.85%
1557

Object Variables

Event Variables
 e2: payment reminder

Filters

 o1 e2

Constraints

566

A

X

B

Y

Object Variables
 o1: orders

Event Variables

Filters

Constraints

OR�A,B�

2000

18.2%
364

Object Variables

Event Variables
 e3: confirm order

Filters

 o1 e3

Constraints

|X| � 1

2000

40.35%
807

Object Variables

Event Variables
 e4: pay order

Filters

 o1 e4

 e3 e4 0 - 1.3w

Constraints

1193

Object Variables

Event Variables

Filters

Constraints

|Y| � 1

2000

77.85%
1557

Object Variables

Event Variables
 e2: payment reminder

Filters

 o1 e2

Constraints

566

Figure 4.7: More complex constraints, like OR constructs, can be discovered by merging appro-
priate subconstraints (shown on the left) to a composed constraint (shown on the right). For that,
the subconstraints should have a common variable assigned to the same object or event type, in
this example the o1 variable of type orders. Additionally, the composed constraint is only in-
teresting and desirable to be discovered for certain subconstraints with some specific features,
which are discussed later.

Discovering Composed OR Constraints Consider an event or object type t ∈ OTL ∪ ETL
and assume a set of discovered (count and eventually-follows) constraints C rooted at this type.
Let c, c′ ∈ C be two such query tree constraints with c = ((Vc, Fc, rc, lc, boxc), constrc) and
c′ = ((Vc′, Fc′, rc′, lc′, boxc′), constrc′). In particular, we assume that there is a single variable
v ∈ UobVar ∪ UevVar assigned to the same types ts ⊆ Uetype ∪ Uotype by both c and c′, i.e., v ∈
dom(Var(boxc (rc)))∩dom(Var(boxc′ (rc′)))with ts = Var(boxc (rc)) (v) = Var(boxc′ (rc′)) (v).

Before describing how to construct the combined OR-constraint in the form of a query tree con-

51

Chapter 4. Process Queries and Constraints using Variable Bindings

straints, we first discuss what combinations of constraints c and c′ are likely to form a desirable
OR-constraint. The following are factors that can be considered (e.g., using a threshold) for dis-
covering interesting OR constraints:

• Good fitness: The combined OR-constraint should have good fitness, i.e., be satisfied for at
least the specified fraction p of output bindings. For instance, commonly, only constraints
with a fitness of at least 0.8 are considered.

• Better than independent: Let p1 and p2 be the satisfied fraction of c and c′, respectively.
Assuming that the constraints are completely independent, the disjunction is expected to
be satisfied in p̂ = 1−((1−p1) · (1−p2)) = p1+p2−p1 ·p2 percent of bindings. Considering
the fraction p/p̂, the combined OR-constraint is interesting if it is satisfied more often than
would be expected if both partswere independent, i.e., with larger fractions p/p̂ (e.g., ≥ 1.1)

Similar factors or heuristics can also be established for other types of constraint combinations,
not only OR-constructs. In Example 4.26, an OR constraint consisting of one count and one
eventually-follows constraint is considered, which according to the presented factors is desire-
able to be discovered.

Example 4.26 (Interesting ORConstraint): Consider an order management OCED L and
two constraints c and c′, specifying that for an object of type orders, there should be:

• c: at least one event of type pay order within 4 weeks after every confirm order
event associated with the order

• c′: ≥ 1 events of type payment reminder associated with the order
Semantically, it can be assumed that these two constraints are not independent and would
indeed be a good OR candidate. Assuming that c has a satisfaction ratio of p1 = 0.63 and c′

of p2 = 0.22, the expected satisfaction of the OR, assuming they are independent, would be
0.63 + 0.22 − 0.63 · 0.22 ≈ 0.71. Instead, the OR construct has a satisfaction ratio of 0.86,
and thus with 0.86/0.71 ≈ 1.21 ≥ 1.1, seems to indeed be an interesting OR candidate.

Of course, there are also other factors to consider. For instance, it is undesirable to discover
obvious tautologies as OR constraints, as described in Example 4.27.

Example 4.27 (Uninteresting OR Constraint): Again, consider an order management
OCED L and two count constraints c and c′, specifying that for an object of type orders,
there should be:

• c: ≤ 3 objects of type items associated with the order
• c′: ≥ 4 objects of type items associated with the order

An OR construct of c and c′ is clearly not very interesting, as it is always fulfilled.
Such candidates should be filtered out. For instance, by not considering two count con-
straints involving the same related object type. Additionally, if at least some noise in the
log is assumed to exist, OR construct candidates with perfect fitness (i.e., p = 1) where the
constraint part are totally disjoint (p1 = 1 − p2) could also be filtered out.

An example OR constraint specifying that “An order is either paid fast (i.e., within ≈ 1.3 weeks)
after confirmation or at least one payment reminder is sent out” is shown in Figure 4.8, consist-
ing of a combination of both count and eventually-follows subconstraints. This constraint was
automatically discovered based on the order management OCED from [36].

Finally, we next describe how the combined OR query tree constraints can be constructed for-
mally based on the constraint parts c and c′. The combined OR constraint from c and c′ is then
the query tree constraint T = ((V , F , r, l, box), constr)L with:

52

Chapter 4. Process Queries and Constraints using Variable Bindings

• V = {vr } ∪ Vc ∪ Vc′

• F = {f1, f2} ∪ Fc ∪ Fc′ with
f1 = (r, rc) and f2 = (r, rc′)

• r = vr

• l : F → UsetName with

l (f) =


lc (f), if f ∈ Fc
lc′ (f), if f ∈ Fc′

A, if f = f1
B, if f = f2

• box : V → BOXL where

box(v) =

boxc (v), if v ∈ Vc

boxc′ (v), if v ∈ Vc′

vr , otherwise, i.e., v = vr

with vr = ({v ↦→ ts}, ∅).

• ∀u∈V constr : V → P(PL) with

constr (u) =

constrc (u), if u ∈ Vc

constrc′ (u), if u ∈ Vc′{
ORALL({l (f1), l (f2)})

}
, if u = vr

box(v0) with constr (v0)
o1 : Object(orders)

ORALL(A, B)

box(v1) with constr (v1)
e3 : Event(confirm order)

E2O(e3, o1, ∗)

|X| ≥ 1

box(v2) with constr (v2)
e4 : Event(pay order)

E2O(e4, o1, ∗)
TBE(e3, e4, 0, 1.3w)

box(v3) with constr (v3)

|Y| ≥ 1

box(v4) with constr (v4)
e2 : Event(payment reminder)

E2O(e2, o1, ∗)

A B

X Y

v0

v1

v2

v3

v4

A

X

B

Y

Object Variables
 o1: orders

Event Variables

Filters

Constraints

OR�A,B�

2000

18.2%
364

Object Variables

Event Variables
 e3: confirm order

Filters

 o1 e3

Constraints

|X| � 1

2000

40.35%
807

Object Variables

Event Variables
 e4: pay order

Filters

 o1 e4

 e3 e4 0 - 1.3w

Constraints

1193

Object Variables

Event Variables

Filters

Constraints

|Y| � 1

2000

77.85%
1557

Object Variables

Event Variables
 e2: payment reminder

Filters

 o1 e2

Constraints

566

Figure 4.8: Automatically discovered OR-constraint based on an example order management
OCED. Put into words, it specifies that an order should be either paid quickly after confirmation
(i.e., within 9 days ≈ 1.3 weeks) or at least one payment reminder should be sent out for it.

53

Chapter 4. Process Queries and Constraints using Variable Bindings

4.6 Extensions

As the final part of this chapter, we present some extensions of the previously presented main ap-
proach in this section. For that, we consider an expression programming language, the so-called
Common Expression Language (CEL)1. We first describe how, through the addition of binding
predicates based on CEL, users can implement more advanced predicates themselves. Addition-
ally, expanding on this idea also allows computing Key Performance Indicators (KPIs) or other
annotations based on the basic querying approach we developed. In a more general sense, an-
notations of output bindings beyond the Boolean constraint violation status introduced in Sec-
tion 4.3 are possible. Belowwe first shortly introduce both extension ideas before providingmore
details on them in the following pages.

1. More Expressive Predicates: First, we focus on a simple use case for a general expression
language: Defining binding predicates. New predicate types are sketched, which allow in-
cluding a CEL program with Boolean output. The predicate is then defined to be satisfied
for an input binding exactly if the program outputs true for the given input binding as
context. Through this simple idea, many more complex predicates can be easily defined
by the user without advanced implementation efforts. For instance, in the example query
shown below on the left, all bindings of orders objects which have a price between 100€
and 1000€ (excluding the bounds) are queried. This query cannot be expressed using the
previous predicate types, but is easily modeled using a simple CEL program (shown sepa-
rately on the right).

Object Variables
 o1: orders

Event Variables

Filters
o1.attr('price') > 100 && o1.attr
('price') < 1000

Constraints

517

o1.attr('price') > 100
&& o1.attr('price') < 1000

2. General Binding Annotations (e.g., KPIs): Next, we expand on this idea and addition-
ally allow computing other types of values (e.g., numerical KPIs) using CEL programs. This
is achieved by generalizing the concept of annotated output bindings, which were previ-
ously only considered in a Boolean format, indicating if the constraints were satisfied or
violated. In this more general extensions, multiple annotation columns can be added iter-
atively, which allows computing KPIs and other values. For example, in the table shown
below, each output binding (where o1 is bound to customer objects) is annotated with two
additional column values: orderVolume, which is the total order amount of the customer
in the binding, and customerClass, which is derived from the order volume and indicates
the customer rewards class.

o1 orderVolume customerClass

o1 400 silver
o2 800 gold
o3 600 silver
o4 200 bronze

1See https://github.com/google/cel-spec and https://cel.dev/.

54

https://github.com/google/cel-spec
https://cel.dev/

Chapter 4. Process Queries and Constraints using Variable Bindings

4.6.1 Further Increasing Predicate Expressiveness

The query and constraint approach presented so far is very expressive, as it considers bindings
and can evaluate predicates on concrete constructed bindings. The collections of binding predi-
cates presented in this thesis can also be extended, rendering the whole approach extensible and
adaptable to different specific use cases. In theory, any computable function can be expressed
using a binding predicate.

However, in practice, this extensibility is still a high barrier for most potential users. Moreover,
oftentimes the predicates that users might want to express are not highly specific but very sim-
ilar to the ones already expressible. Consider, for instance, a predicate filtering bindings such
that the value assigned to an object variable should have a specified attribute (e.g., price) which
value should be within a specified range with open bounds (e.g., > 100€ and < 1000€). In the de-
fined attribute data predicates, representing open interval values is not easily possible. However,
such predicates can be conveniently represented and modeled in CEL. For instance, assuming
that the attribute value is available as the variable price, this predicate could be expressed as
price > 100 && price < 1000. CEL is not Turing-complete, which on the one hand means
that, at least in theory, it cannot express all computable functions. On the other hand, this limita-
tion allows CEL to focus on performance and safety without any large expressiveness drawbacks
in practice. CEL can also easily be extended and used from within a large variety of architectures
and programming languages. We will not present CEL and the functionality exposed to the CEL
programs in our approach formally, as this would be outside the scope of this thesis. Instead,
we will semi-formally define two new types of predicates based on CEL programs and show
examples highlighting how they can be used. The CEL programs inside the predicates will be
executed, assuming to return a Boolean value of either true or false, signaling if the checked
binding is satisfied for this predicate. As input context, the CEL programs have access to certain
predefined variables, for instance corresponding to the object and event variables available in
the binding that should be checked. In the following, we first present a basic CEL predicate to
be used as a basic or attribute filter.
Definition 4.19 (Basic CEL Predicate): A basic CEL predicate consists of a CEL program
C which, given the variables and value of a specific binding as input context, returns either
true or false. We then define BasicCEL(C) ∈ PL and for any binding b ∈ BL it holds:

b |= BasicCEL(C) ⇔ C returns true given the variable assignments of b as context
The variable assignment of a binding b ∈ BL in a CEL program is represented as input context
using same variable names. Different properties or attributes of the variable value can be accessed
using special functions. For instance, the attr function is defined, which retrieves the object
attribute value of events or objects for a specified attribute name. As there might be multiple
different values at different timestamps for objects, this function simply returns the first value.
The function attrAt can be used instead of objects, which additionally takes a timestamp at
which the object attribute value should be retrieved. With these functions, many predicates not
covered by the simple predicates presented in the main approach can already easily be expressed.
For instance, the order price filter predicate mentioned before can be implemented as a basic CEL
filter, with the CEL program shown in Code 4. Inside a query tree constraint node, basic CEL
predicates are shown using a blue codeblock icon, as visible in Figure 4.9 on the left.

Some of the other types of functions defined for event and object variable values, are:

• time, which retrieves the timestamp of an event.
• type, which retrieves the object or event type of the variable value.

55

Chapter 4. Process Queries and Constraints using Variable Bindings

o1.attr('price') > 100 && o1.attr('price') < 1000

Code 4: A simple CEL program as part of a basic CEL binding predicate. The attribute value
price of the value from the object variable o1 has to be within the range (100, 1000) for this
predicate to be satisfied for a binding.

Furthermore, there are general functions available which allow accessing all objects or events
in the whole OCED or their count (i.e., numEvents and numObjects as well as events and
objects). Common programming functions, like count, map, avg, and filter are also avail-
able in the CEL programs. Thus, also global predicates and constraints, independent of a specific
variable binding can be modeled, for instance using the CEL programs shown in Code 5.

1 numObjects() >= 3000
2 size(objects().filter(x, x.type() == 'employees')) >

size(objects().filter(x, x.type() == 'customers'))↩→

Code 5: More CEL programs (one per line) that can be part of basic CEL binding predicates. In
line 1: Evaluates to true if there are at least 3000 objects in the input OCED (i.e., independent
of the considered variable binding). In line 2: Evaluates to true if there are more objects of
type employee than objects of type customers in the input OCED (again, independent of the
considered variable binding.)

Next, we introduce another type of CEL binding predicates, which can access the set of labeled
child bindings of all child nodes in addition to the binding variable values. Again, we underspec-
ify the formalization of these advanced CEL predicates for simplicity.
Definition 4.20 (Advanced CEL Predicate): Let L be an OCED and let T =

((V , F , r, l, box), constr) be a query tree constraint. For a node tree u ∈ V , advanced CEL
predicates can be added based on a CEL program C , which, given the variables and their
value in a specific binding, together with the labeled set of child bindings for each child of
u as input context, returns either true or false. The set of labeled child bindings for all
child nodes of u are represented by the set SX ,b = {b′ ∪ {satisfied ↦→ b′ |= constr (v)} |
b′ ∈ out (box(v) ∧ b vL b′)} for all (u, v) ∈ F with l ((u, v)) = X , where b′ |= constr (v) is
assumed to represent either the value true (satisfied) or false (violated). In the program
C , the edge name can then be used to access this set of labeled child bindings of each child
node of u. We define AdvCEL(C) ∈ PL and for any binding b ∈ BL it holds:

b |= AdvCEL(C) ⇔C returns true given the variable assignments of b
and the labeled child binding sets as input context

In the input context for advanced CEL predicates, all child bindings available as context are
expanded with a variable satisfied, which is not an event or object variable, but instead has
a value of either true or false, specifying if the original binding was satisfied or violated for
the corresponding child node.

Such advanced CEL predicates can express very complex filters or constraints, involving a set of
child bindings. For instance, using an advanced CEL predicate, one could specify that the aver-
age order price of a customer should be above 2500€. A graphical representation of a complete
constraint containing such an advanced CEL predicate is shown on the right of Figure 4.9, where
a purple code icon indicates that this CEL expression is part of an advanced CEL predicate.

56

Chapter 4. Process Queries and Constraints using Variable Bindings

Object Variables
 o1: orders

Event Variables

Filters
o1.attr('price') > 100 && o1.attr
('price') < 1000

Constraints

517

A

Object Variables
 o1: customers

Event Variables

Filters

Constraints
A.map(b,b['o2'].attr('pric
e')).avg() >= 2300

15

33.33%
5

Object Variables
 o2: orders

Event Variables

Filters

 o1 o2

Constraints

2000

Figure 4.9: Two query trees containing simple or advanced CEL predicates. On the left, a simple
query tree consisting of just one node is shown, which contains a basic CEL predicate containing
the CEL expression from Code 4. This predicate is satisfied for bindings, where the order o1 has
a price between 100€ and 1000€ (excluding the bounds; at any point in time). On the right,
an advanced CEL predicate is part of the root node. The advanced CEL predicate consists of
the following CEL program C : A.map(b,b['o2'].attr('price')).avg() >= 2300. This
constraint is satisfied for bindings of customers, where the average order price is at least 2300€.

57

Chapter 4. Process Queries and Constraints using Variable Bindings

4.6.2 General Binding Annotations

Apart from enabling the creation of customizable binding predicates, CEL can also be used to cal-
culate arbitrary annotation values for bindings, for instance Key Performance Indicators (KPIs).
In particular, for each node we could additionally allow specifying a CEL program which cal-
culates a value (e.g., a numerical score) based on an output binding of the node, as well as the
corresponding child bindings. For parent nodes, values could also be aggregated (e.g., by taking
the average) across values calculated for the child output bindings of the nodes’ children.

Formally defining general binding annotations for query trees is outside the scope of this thesis.
However, we want to shortly sketch the basic idea. For that, consider the example shown in
Figure 4.10. Annotated values are computed using CEL programs based on an input binding
and are then added as additional columns to the output binding table. Similar to the CEL-based
predicates, complex CEL programs can also use sets of child bindings, for instance to compute
the sum of all orders by a customer.

A

Object Variables
 o1: customers

Event Variables

Filters

Constraints

15

Object Variables
 o2: orders

Event Variables

Filters

 o1 o2

Constraints

2000

Annotated Output Table of Root Node
o1 orderVolume customerClass

o1 400 silver
o2 800 gold
o3 600 silver
o4 200 bronze

A.map(b,b['o2'].attr('price')).sum()

CEL program for orderVolume

orderVolume < 300 ? 'bronze' :
(orderVolume < 800 ? 'silver' : 'gold')

CEL program for customerClass.

Figure 4.10: Example of general binding annotations. On the left, a simple query tree is
shown, consisting of two nodes which first query customer objects as o1 and then order ob-
jects placed by the customer as o2. On the top right, the annotated output table of the
root node is shown, where for each output binding assigning o1 to a customer, two addi-
tional values are computed and annotated: orderVolume and customerClass (shown in
bold). Below the table, the CEL programs which compute the corresponding annotated value
based on an output binding are shown. The CEL program for orderVolume is akin to the
average price CEL predicate presented previously. In particular, all child bindings (referred
to as A as per edge label) of orders by the given customer are mapped to the price of the
order which is then summed up. For customerClass two ternary operators (of the form
condition ? 'value when true' : 'value when false') are used to classify order
volumes in different customer classes.

58

Chapter 4. Process Queries and Constraints using Variable Bindings

Generally, binding annotations can be defined iteratively and thus build on top of each other.
For instance, in the example shown in Figure 4.10, customerClass is calculated based on
orderVolume. In this context, the violation status of a node can also be represented as sim-
ply a Boolean annotation of bindings.

Finally, we also demonstrate how constraints based on KPIs can also be added using only the CEL
predicates introduced in the previously presented extension. In particular, these constraints can
impose that a certain KPI should be within a specified range. Figure 4.11 shows such an example
constraint, which defines a target value for the total order volume within the last 24 hours, and
is violated if this target KPI value is not met.

A

Object Variables
 o1: orders

Event Variables
 e1: place order

Filters

 o1 e1

Constraints

2000

Object Variables

Event Variables

Filters

Constraints
A.filter(b,timestamp('2024-
03-01T00:00:00+00:00') - b
['e1'].time() <= duration
('24h')).map(b,b['o1'].attr
('price')).sum() >= 10000

1

0%
0

A

Object Variables
 o1: orders

Event Variables
 e1: place order

Filters

 o1 e1

Constraints

2000

Object Variables

Event Variables

Filters

Constraints
A.filter(b,timestamp('2024-
04-01T00:00:00+00:00') - b
['e1'].time() <= duration
('24h')).map(b,b['o1'].attr
('price')).sum() >= 10000

1

100%
1

A.filter(b,timestamp('...') - b['e1'].time() <= duration('24h'))
.map(b,b['o1'].attr('price')).sum() >= 10000↩→

Figure 4.11: Constraints based on a KPI of total order volume, considering all orders placed in
the last 24 hours of a given timestamp, which is assumed to correspond to “now”. The base
CEL script is shown below the constraints. It filters all bindings b of the child node, in this case
corresponding to all placed orders, based on whether the placement date is within 24 hours of
the provided timestamp. Afterwards, the price of all these orders is summed up. The constraints
are satisfied, if the total price sum of all orders placed within the last 24 hours is at least 10000€.
The constraint on the left, assuming the first of March as a timestamp, is satisfied, while the one
on the right, based on the first of April is violated.

As observable in Figure 4.11, such constraints can quickly become unreadable. However, this
could be improved by iteratively introducing annotations of bindings which can build on top
of each other. In the shown example, it would, for instance, make sense to first introduce the
total order volume as an annotation and then define predicates based on the computed annotated
value.

59

Chapter 5

Implementation

In this chapter, we describe our implementation of the proposed approach, addressing the re-
search goalsRG5 (i.e., implementation of a graphical tool for designing and executing queries or
constraints) and RG6 (i.e., implementing the previously described discovery approach). We im-
plemented a full-stack software tool OCPQ, consisting of a backend for efficient query execution
and a frontend for designing and managing queries and constraints. The resulting contributions
presented in this chapter are CT4 (i.e., the main graphical tool) and CT6 (i.e., the Rust-based
OCEL 2.0 JSON and XML importers). The OCPQ tool is available and can be downloaded at
https://github.com/aarkue/OCPQ. In the following, we first provide an overview of the
architecture of our developed tool. Next, we detail the implementation of the Execution Engine
for evaluating queries and constraints. In particular, we cover its functionality and techniques
applied for achieving high performance. Finally, we present the graphical user interface of our
tool and its features, aiming to make modeling and evaluating queries and constraints accessible
also to non-technical users.

5.1 Overview and Architecture

Backend
Execution
Engine

Frontend
Constraint

Editor

Full-Stack Web Application

Desktop Application

Figure 5.1: Overview of our implementation approach: The two main components are an ef-
ficient execution engine implemented in Rust and a user-friendly graphical constraint editor
implemented in TypeScript React. This flexible architecture allows for deploying and using the
tool as a full-stack web application or an installed desktop application.

60

https://github.com/aarkue/OCPQ

Chapter 5. Implementation

An overview of our implementation components is shown in Figure 5.1. The two main parts, the
performance-focused execution engine backend and the graphical editor frontend, are largely im-
plemented independently. Common exchange formats, like a JSON-representation of the Query
Tree Constraints introduced in Chapter 4, allow backend and frontend to communicate with
each other. For instance, when a user finishes designing a constraint in the editor, its JSON-
representation can be sent to the backend to evaluate the constraint for the currently loaded
OCED.

Defining clear interfaces between the two components enables very flexible deployment meth-
ods: The tool can be used as a full-stack web application or an installable desktop application.
In the full-stack web application scenario, the execution engine backend is served by a server
while (multiple) users can access the frontend as a website on their computers. Of course, both
backend and frontend can also be hosted on the same machine. Alternatively, end users can also
install the tool as a desktop application locally, where both the execution engine and the editor
frontend are integrated.

For technical reasons, there might be some special functionality implemented specially for one of
the deployment modes. For instance, the full-stack web application should allow users to upload
an OCEL 2.0 to the backend, while for the desktop application showing a native file selector to
choose an OCEL 2.0 file should be possible.

Next, we first present further details about the implementation of the execution engine, focusing
on the implemented features and performance characteristics.

5.2 Execution Engine

The execution engine is implemented in the programming language Rust and focuses on effi-
ciently computing query or constraint results. Its functionality can be mainly differentiated into
the following parts:

• OCED Import

• Preprocessing of OCED

• Query Tree Constraints & Query Evaluation

• Discovery of Constraints

OCED Import As part of this thesis, we implemented import algorithms for OCED based on
the OCEL 2.0 standard (see [2]) in the XML and JSON versions. They were contributed upstream
to the Rust4PM project1, a Rust library for process mining, which we introduced in [39].

Preprocessing of OCED To enable fast evaluation of multiple queries based on the same input
OCED, the backend allows loading an active OCED which is preprocessed directly after loading.
In OCEL 2.0 objects and events are linked based on their identifiers. However, when expanding
a huge numbers of bindings, looking up events or objects by identifier impacts performance
negatively. Recall, that the expansion of bindings is largely based on the object-to-object and
event-to-object relationships, as described in Section 4.4. Thus, to enable faster expansion of
input bindings, the OCED is processed to reference objects and events by an index instead. The

1https://github.com/aarkue/rust4pm

61

https://github.com/aarkue/rust4pm

Chapter 5. Implementation

relations in the OCED are also extracted in a way that, given an object or event index, the related
objects and events can easily be identified. An additional advantage of the index-based reference
to events and objects is reduced memory usage: Storing a single variable assignment requires at
least the size of the variable name and event or object identifier, plus some additional bytes used
for memory management. Storing both the variable identifier and object or event identifiers,
as indices instead requires, on 64-bit architectures, only 8 bytes each and thus 16 bytes total.
Depending on the length of used string identifiers, this significantly reduces the overall memory
usage and also enables constructing all output bindings for queries which would otherwise not fit
into system memory. We also represent object and event variables as numbers. For example, the
object variable o1 would be represented as O(0). In that, one bit (represented as either O or E,
for object and event variables, respectively) specifies that it is an object variable and the integer
0 is the zero-based variable index. A variable binding is then represented as {O(0) ↦→ 1,O(1) ↦→
3,E(0) ↦→ 12} through this index-based approach, where 1 and 3 are the object-indices of the
variable values of the object variables o1 and o2, respectively, and 12 is the event-index of the
variable value of the event variable e1.

Query Tree Constraint &Query Evaluation Our query and constraint method presented in
Chapter 4 (specifically Section 4.2 and Section 4.3), is implemented using different data structures
corresponding to the introduced concepts of bindings, different types of predicates, binding boxes
and query tree constraints. For nodes of a query tree constraint, an evaluation function is imple-
mented according to the recursive algorithm approach sketched in Section 4.4. The expansion of
bindings as well as the recursive evaluation calls and the evaluation of predicates is parallelized,
which further increases speeds. For the expansion of bindings, our implementation follows the
intelligent binding construction approach presented in Section 4.4. In particular, a sequence of
binding and filter steps are constructed. Initially, for all new variables a simple step binding the
variable to all possible values is added, and all filter predicate are added as steps at the end. Next,
based on how variables can be bound on other variables, the binding order is updated and steps
are replaced to bind variable values based on already bound variables. Filter predicates which
are automatically fulfilled based on their binding step are removed. Additionally, the remaining
filter predicates are moved up to be evaluated as soon as all involved variables are bound.

Discovery of Constraints The backend also allows automatically discovering query tree con-
straints based on input OCED, as described in Section 4.5. However, the approach is optimized
for runtime and uses the pre-computed symmetric relationship graph of the OCED to quickly
discover count and eventually-follows constraints. Additionally, OR constraints are not con-
structed based on just combining all discovered constraints. Instead, a sample of input bindings
(i.e., binding the object type of interest) is constructed and a count or eventually-follows con-
straints are discovered for this sample, such that it is not satisfied in (nearly) all the bindings.
Next, the bindings for which this constraint is not satisfied are considered and used to discover
a second count or eventually-follows constraint which is satisfied for these bindings. As a re-
sult, combining these constraints often yields interesting OR constructs, which are also primarily
exclusively satisfied (i.e., would also be a good exclusive choice XOR construct).

Next, we will present the implemented user interface, detailing how to use it and what features
are supported.

62

Chapter 5. Implementation

5.3 User Interface

The graphical user frontend is the main way users can design and evaluate constraints and
queries. As such, the frontend should support the following functionalities:

• Load OCEL 2.0 files and display log information

• Manage and organize multiple constraints

• Design constraints and queries in interactive editor

• Execute queries and constraints and view the resulting output

• Configurable auto-discovery

Next, we present each of these features individually together with corresponding screenshots of
the tool interface.

Loading OCEL 2.0 Initially, when no OCED is loaded, the frontend prompts to select an
OCEL 2.0 file to load. Depending on the setup, a file can either be selected from pre-defined
options or a custom OCEL 2.0 XML or JSON file can be selected or uploaded from the user’s
machine. After the OCED is loaded and pre-processed, some basic information, like the number
of events and objects or the contained event and object types, are shown (see Figure 5.2).

Figure 5.2: Screenshot of the displayed information about the currently loaded OCEL 2.0 file in
the tool frontend.

Constraint Management After an OCED is loaded, the constraint and query overview can
be accessed using the corresponding button in the menu on the left. As shown in Figure 5.3, the
constraint overview shows a list of all saved constraints togetherwith their name and description.
Additionally, a button at the top allows adding new constraints. Individual constraints can also
be selected by clicking on them. Furthermore, constraints can also be deleted from this overview
using the corresponding buttons.

63

Chapter 5. Implementation

Figure 5.3: A screenshot of the tool frontend showing an overview over the locally saved con-
straints, each of which is displayed with its corresponding title and description.

Constraint & Query Editor Once a new constraint was added or an existing one selected,
details of the constraint are shown. A screenshot of this view is shown in Figure 5.4. At the
top, the title, and description of the constraint can be updated. Additionally, a quick selector
allows selecting one of the other saved constraints. On the bottom, the interactive editor allows
designing the corresponding query tree constraint.

Figure 5.4: Two screenshots of the same constraint shown inside the editor: On the left, without
evaluation results (i.e., before the constraint was evaluated) and on the right with evaluation
results. On the right, the individual tree nodes show the number of bindings and violations, and
are colored corresponding to their violation percentage.

In the query tree constraint editor, new nodes can be added using the plus buttons on the top
right. Existing nodes can also be modified or removed. To connect a node to an existing query
tree, a new edge can be created by dragging the source connector (which are on the top and
bottom of nodes) to the target connector. Just like in the previously shown formal notation, vari-
ables and predicates are only shown in nodes where they are introduced and are omitted from
the children. In particular, this means that by connecting a parent node with a new child, all
variables and predicates (in BASICL and ATTRSL) are automatically assumed to now also be
present in the child, without the need to manually add them. Thus, query tree constraints in-
volving multiple nodes can easily be constructed without the overhead of manually fulfilling the

64

Chapter 5. Implementation

formal requirements. In Figure 5.5 some of the dialogs that open to allow modifying the predi-
cates or variables of a binding box node are presented. These dialogs can be accessed by clicking
on the plus icons to add new variables or predicates, or clicking on already existing variables and
predicates to modify existing ones. The editor allows modeling multiple query tree constraints
for the same constraint, which are simply considered and evaluated separately. The save button
on the top right of the whole frontend can be used to save all modeled constraints, together with
their name and description, locally on the users machine. They are then automatically loaded
when accessing the frontend.

Figure 5.5: Screenshots of different edit dialogs for the object variables and filter predicate of a
node in the frontend.

Execution &Viewing Results After the query tree constraint is complete, it can be evaluated
by clicking on the play button on the top right. A JSON representation of the modeled query tree
constraint is then transmitted to the execution engine, where it is evaluated. When the backend
finishes the evaluation, the results, i.e., all labeled output bindings, are sent back to the frontend
and displayed there, as shown in Figure 5.4. The violation percentage of output bindings for each
node is used to color it, ranging from green (no violations) to red (high percentage of violations).
Nodes which only query and do not contain constraints (i.e., v ∈ V where constr (v) = ∅) are
simply shown in blue. For each node, the total number of output bindings is shown on the top
right and the number of violated output binding as well as the violation percentage is shown on
the bottom right. The individual labeled output bindings of a node can also be viewed in more
detail by clicking on the violation percentage indicator, which opens a panel with further details
on the side.

AdvancedEditor Features Thequery tree constraint editor has some advanced featureswhich
supports users in modeling complex constraints. Tree nodes and edges can be selected by either
clicking on them (while holding the control key when selecting multiple elements) or by hold-
ing shift and dragging a rectangular selection with the mouse. Selected elements can be copied
and pasted using the conventional keyboard shortcuts (i.e., Ctrl+c and Ctr+v). In Figure 5.7a the
query tree constraint on the left was selected, copied and pasted to the right, resulting in the
duplication of the tree on the right, which is currently selected in the screenshot. Additionally,
automatic layouting can be applied to either all nodes or only selected nodes using the Auto lay-
out button on the top right of the editor. Figure 5.7b shows the node editor content before and
after applying automatic layouting.

CEL Script Editor We also implemented the predicate extension based on Common Expres-
sion Language (CEL) scripts we introduced in Subsection 4.6.1. Apart from the implementation

65

Chapter 5. Implementation

Figure 5.6: A screenshot showing the evaluation results for the selected constraint node inside
the tool UI. On the results panel on the left, the output binding table corresponding to the node
is shown. In the last column, the violation status is shown, together with the first encountered
violated constraint predicate (if any). The table can be searched and filtered, for example, to only
show violated or satisfied output bindings.

in the execution engine, the frontend features a interactive code editor with auto-complete, syn-
tax highlighting, and function signature hints. We implemented these editor features as custom
extensions of the Monaco editor2, which is a very popular browser-based code editor. These
advanced CEL-related features allow users to easily start writing CEL scripts. Moreover, they
also allow non-programmers to model simple to more complex predicates in CEL. In Figure 5.8,
a screenshot of the editor is shown, where a function description is currently displayed.

Automatic Discovery Using a button at the top, the automatic discovery approach presented
before can be executed. Multiple discovery parameters, like the event or object types to discover
constraints for, or the minimum fitness fraction of the discovered constraints, can be configured.
The discovered constraints are afterwards added to the constraint list in the frontend and can
then be deleted and modified, just like manually constructed constraints.

2See https://github.com/microsoft/monaco-editor.

66

https://github.com/microsoft/monaco-editor

Chapter 5. Implementation

(a) The constraint on the left was copied and pasted on the right, where the pasted nodes are selected.

X

X

A B

X

C

A

Object Variables
 o1: Offer

Event Variables

Filters

Constraints

OR�A,B,C�

42995

0.4%
174

Object Variables

Event Variables
 e1: O_Accepted

Filters

 o1 e1

Constraints

17228

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

59.93%
25767

Object Variables

Event Variables
 e1: O_Refused

Filters

 o1 e1

Constraints

4695

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

89.08%
38300

Object Variables

Event Variables
 e1: O_Cancelled

Filters

 o1 e1

Constraints

20898

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

51.39%
22097

Object Variables
 o1: Offer

Event Variables
 e1: O_Cancelled

Filters

 o1 e1

Constraints

|A| � 0

20898

0%
0

Object Variables

Event Variables
 e2: O_Accepted,

O_Refused

Filters

 o1 e2

Constraints

0 ⇒
X X

A B

X

C

A

Object Variables
 o1: Offer

Event Variables

Filters

Constraints

OR�A,B,C�

42995

0.4%
174

Object Variables

Event Variables
 e1: O_Accepted

Filters

 o1 e1

Constraints

17228

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

59.93%
25767

Object Variables

Event Variables
 e1: O_Refused

Filters

 o1 e1

Constraints

4695

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

89.08%
38300

Object Variables

Event Variables
 e1: O_Cancelled

Filters

 o1 e1

Constraints

20898

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

51.39%
22097

Object Variables
 o1: Offer

Event Variables
 e1: O_Cancelled

Filters

 o1 e1

Constraints

|A| � 0

20898

0%
0

Object Variables

Event Variables
 e2: O_Accepted,

O_Refused

Filters

 o1 e2

Constraints

0

(b) Two constraints inside the editor before (on the left) and after (on the right) automatic layouting.

Figure 5.7: Screenshots showing some of the advanced editor features: Copy-and-paste support
and automatic layouting.

Figure 5.8: A screenshot showing the CEL script editor for implementing advanced predicates in
the frontend UI.

67

Chapter 6

Evaluation

In this chapter, we evaluate the proposed querying and constraint approach. As such, it addresses
the research question RQ3 and fulfills research goals RG7 and corresponds to our contribution
CT5. We perform two types of evaluations, focusing on the expressiveness of the approach and
the runtime:

Qualitative Analysis We present some example query and constraint formulations in natural
language and then demonstrate how they can be expressed using our approach. Some
of the example constraints presented in the Qualitative Analysis were also automatically
discovered, serving as examples of how high-quality constraints can be discovered auto-
matically based on OCED.

Performance Analysis We investigate the runtime of the implemented execution engine when
evaluating queries and constraints on input OCED. In the Performance Analysis, we inves-
tigate the execution time when evaluating some of the presented example constraints and
queries. Additionally, we also investigate the expected runtime more systematically to
identify the scalability of our approach and implementation.

Finally, we also discuss threats to the validity of the evaluation performed in this chapter. Before
presenting the evaluation results, we first describe our experimental setup and introduce the used
OCED as well as our hardware setup.

6.1 Experimental Setup

6.1.1 Datasets

We evaluated our approach on a variety of the publicly available OCEL 2.0 files, an overview over
which is shown in Table 6.1. Most of these are simulated example logs sourced from https:
//www.ocel-standard.org. As a notable exception, we also include an OCEL 2.0 version of
the BPI Challenge 2017 event log, originally distributed in the XES format as a flat, traditional
event log in [30]. The BPI Challenge 2017 is significantly larger than the other considered OCEDs
and is derived from a real-life loan application process of a Dutch financial institute [30]. As the
log involves applications, offers, and workflows, it was also in previous analysis often considered
only in parts. An object-centric version of the log is available from [40], which we converted to
the OCEL 2.0 standard file format, additionally adding object-to-object relationships.

68

https://www.ocel-standard.org
https://www.ocel-standard.org

Chapter 6. Evaluation

Table 6.1: An overview of the datasets used for the qualitative and quantitative evaluation.

Name #Events #Objects #Event Types #Object Types Reference
Procure-to-Pay 14671 9543 10 7 [41]

Order Management 21008 10840 11 6 [36]
Container Logistics 35413 13910 14 7 [42]

BPI Challenge 2017 OCED 1202267 106162 26 4 [30, 40]

Apart from the expressiveness of the approach, we also investigate the runtime of queries and
constraints in the quantitative analysis. As such, the size of the considered OCED is of particular
interest. In Figure 6.1, the number of events and objects inside each considered log are presented
in a logarithmic scatter plot. The number of events and objects inside the simulated OCEDs
mostly lay in the 10,000 – 50,000 range, while the BPI Challenge 2017 OCED contains over one
million (1,000,000) events and one hundred thousand (100,000) objects.

1k 2k 5k 10k 20k 50k 100k 200k 500k 1M 2M
1k

2k

5k

10k

20k

50k

100k

200k

500k

1M

2M Name
Procure-to-Pay
Order Management
Container Logistics
BPI Challenge 2017

Number of Events and Objects in the Considered OCEDs

#Events [log.]

#O
bj

ec
ts

 [l
og

.]

Figure 6.1: A logarithmic scatter plot showing the numbers of events and objects inside the
considered dataset. Notably, the BPI Challenge 2017 is by far the largest OCED with more than
one million events.

6.1.2 Hardware

All of our execution time performance measurements were done on a laptop equipped with an
AMD Ryzen 9 5900HX CPU (8 cores/16 threads) and 32 GB of memory. To account for expected
variations in execution speed, we repeated all measurements ten times and plotted all results
together with their mean.

69

Chapter 6. Evaluation

6.2 Qualitative Analysis

In this section, we present example constraints and queries implemented using our approach.
They are organized according to the OCED used for the presented query or constraint. For each
of them, we also give a textual formulation of the constraints, mention the evaluation results and
contextualize the type of considered constraint or query regarding the related work presented
in Chapter 2. We also segment the textual formulation to indicate which segments correspond to
a subquery part which we name explicitly, for instance, as Q1 and Q2. These query parts corre-
spond to a node in the query tree constraint. Moreover, we mention what variable is introduced
in which part of the textual constraint description. However, we omit the formal definitions of
the constraints and present the tool UI constraint visualization instead.

Additionally, we also measured the evaluation time for each presented example 10 times. This
evaluation time includes the complete construction of all output bindings with violation infor-
mation, but does not include the time it takes to transfer this result back to the frontend of the
tool. To better represent the measured durations, we categorize the mean execution time in dif-
ferently colored duration ranges. All 10 measured values are plotted inside a range plot, where
the different duration categories are colored accordingly. Two such example plots are shown
inside Figure 6.2.

0ms 100ms 300ms 500ms 700ms 1000ms

4.93ms

0ms 100ms 300ms 500ms 700ms 1000ms

228.07ms

Figure 6.2: Example execution times of different constraints. The execution times on the top are
very fast and can be categorized as nearly instant. On the bottom, the execution time is still very
fast but takes longer than 0.2 seconds.

The axis covers a range from 0ms to 1000ms (i.e., 1s). All example constraints presented in this
section fit well within this range. Of course, it is also possible to model constraints which take
longer than 1s to complete on our machine and the considered OCEDs. For most of the con-
straints or queries we consider, the execution times are located towards the lower end of this
scale. This demonstrates the good performance of our approach, on different OCEDs, including
one large real-life dataset (i.e., the BPI Challenge 2017 OCED). However, we still selected 1s as
the maximum range value, as this execution time is still rather fast, especially in comparison to
other approaches and related work. Additionally, this range selection is well suited to compare
the execution times for different constraints and datasets.

We also include some example constraints thatwere automatically discovered based on theOCED
as input data. They demonstrate that the automatic discovery approach we presented in Sec-
tion 4.5 yields useful and understandable constraints, even for real-life datasets.

70

Chapter 6. Evaluation

6.2.1 Order Management

Order Paid Exactly Once (Automatically Discovered)

“Every
o1︷︸︸︷

order︸ ︷︷ ︸
Q1

should

e1︷ ︸︸ ︷
be paid︸ ︷︷ ︸

Q2

exactly once. ”

The representation of this constraint in our tool UI is shown
on the right. It consists of two binding boxes: The top one
corresponds to Q1, while the bottom one corresponds to Q2.
In essence, this constraint restricts the number of associated
events with a specified activity (i.e., pay order) for object in-
stances of a given object type (i.e., orders).
Evaluation Result In the input OCED, this constraint is never
violated. 2000 bindings of order objects are considered. Eval-
uating this constraint on the OCED only takes around 1.5ms.

0ms 100ms 300ms 500ms 700ms 1000ms

1.51ms

Related Work This basic type of constraint, i.e., specifying
the allowed number of events of one type related to object in-
stances of another type, is expressible by most constraint ap-
proaches. In particular, such constraints are implementable
in [6, 31, 34] and even in [10, 20] if the OCED is considered
flattened on the orders object type.

A

Object Variables
 o1: orders

Event Variables

Filters

Constraints

|A| � 1

2000

0%
0

Object Variables

Event Variables
 e1: pay order

Filters

 o1 e1

Constraints

2000

At Most 5 Items Per Order (Automatically Discovered)

“For every
o1︷︸︸︷

order︸ ︷︷ ︸
Q1

the number of

o2︷ ︸︸ ︷
contained items︸ ︷︷ ︸

Q2

should be at most 5. ”

The constraint structure is very similar to the previous con-
straint, now querying associated objects instead of events.
Evaluation Results In the input OCED, this constraint is vi-
olated for 350 of the 2000 considered order object bindings,
accounting for 17.5%. It can be evaluated in around 2.7ms.

0ms 100ms 300ms 500ms 700ms 1000ms

2.7ms

RelatedWorkThis basic object count constraint is expressible
only in some object-centric constraint approaches (i.e., [31])
but not in [6, 34], as these approach does not consider object-
to-object relations. Similarly, it also cannot be expressed in
traditional approaches, as there is no clear concept of relations
between objects or cases for flat event logs.

A

Object Variables
 o1: orders

Event Variables

Filters

Constraints

|A| � 5

2000

17.5%
350

Object Variables
 o2: items

Event Variables

Filters

 o1 o2

Constraints

7659

71

Chapter 6. Evaluation

Items in Order also Associated with Order Placement

“For every
o1︷︸︸︷

order and contained

o2︷︸︸︷
item︸ ︷︷ ︸

Q1

the item should also be associated with the

e1︷ ︸︸ ︷
place order event of the order︸ ︷︷ ︸

Q2

.”

First, Q1 queries combinations of related order (o1) and item
(o2) objects. Next, for all place order events e1 related to
the order o1, Q2 checks if e1 is also related to the item o2. The
constraint of Q1 is satisfied for a binding of o1 and o2, if this
condition holds for all corresponding e1 events.
Evaluation Results In the input OCED, this constraint is
never violated. 7659 bindings are constructed for Q1, as per
average there are around 3.82 items per each of the 2000 to-
tal orders. This constraint can be evaluated in around 5ms.

0ms 100ms 300ms 500ms 700ms 1000ms

4.93ms

Related Work This constraint links object-to-object relation-
ships with “transitive” event-to-object relationships. Such
types of constraints are only also expressible in [31]. In [6, 34],
connections between objects are not considered, and even if
they were, these approaches also do not include concepts al-
lowing explicitly linking multiple relations together.

A

Object Variables
 o1: orders
 o2: items

Event Variables

Filters

 o1 o2

Constraints

SAT�A�

7659

0%
0

Object Variables

Event Variables
 e1: place order

Filters

 o1 e1

Constraints

 o2 e1

7659

0%
0

Customer Orders Should Be On Average ≥ 2300€

“For every
o1︷ ︸︸ ︷

customer︸ ︷︷ ︸
Q1

the average total price of all their

o2︷ ︸︸ ︷
orders︸ ︷︷ ︸

Q2

should be at least 2300€. ”

This constraint makes use of an advanced CEL predicate, which
computes the average price of orders placed by the customer,
based on the set of child bindings in Q2, which queries the or-
ders of the customer. The CEL script included in the predicate
is: A.map(b,b['o2'].attr('price')).avg() >= 2300

Evaluation Results In the input OCED, this constraint
is violated for 5 of the 15 considered customer object
bindings, accounting for 33.33%. It can be executed
almost instantly, taking only slightly longer than 1ms.

0ms 100ms 300ms 500ms 700ms 1000ms

1.34ms

RelatedWork Such a constraint is not expressible in any con-
sidered related work for process constraints. However, SQL-
like non-visual querying approaches like [27, 29] might be able
to express such aggregation and nested querying.

A

Object Variables
 o1: customers

Event Variables

Filters

Constraints
A.map(b,b['o2'].attr('pric
e')).avg() >= 2300

15

33.33%
5

Object Variables
 o2: orders

Event Variables

Filters

 o1 o2

Constraints

2000

72

Chapter 6. Evaluation

Send Payment Reminder for Orders Not Paid Fast

“If an
o1︷︸︸︷

order is not

e2︷︸︸︷
paid fast after︸ ︷︷ ︸

Q2

it is

e1︷ ︸︸ ︷
placed

︸ ︷︷ ︸
Q1

, a

e2︷ ︸︸ ︷
payment reminder for it︸ ︷︷ ︸

Q3

should be sent. ”

A B

Object Variables
 o1: orders

Event Variables
 e1: confirm order

Filters

 o1 e1

|A| � 0

Constraints

|B| � 1

586

24.4%
143

Object Variables

Event Variables
 e2: pay order

Filters

 o1 e2

 e1 e2 0 - 2w

Constraints

1414
Object Variables

Event Variables
 e2: payment reminder

Filters

 o1 e2

Constraints

566

The top binding box, relating to Q1, contains a child-filter predicate based on the number of pay
order events related to it occurring soon after confirmation (corresponding to Q2 on the bottom
left). The constraint is then expressed through the child binding set size of the nested querying
regarding the number of payment reminder events in Q3 (shown on the bottom right).

Evaluation Results In the input OCED, this constraint is violated in 143 out of 586 total
queried bindings, amounting to around 24.4%. Note that the queried bindings already include the
set filter based on A, i.e., only bindings with slow payment are included in this number. The num-
ber of queried bindings forQ3might seem to suggest that only for 20 of the parent bindings, there
is no payment reminder. However, this cannot be observed with confidence, as multiple pay-
ment reminders might be sent for a single order. This constraint can be evaluated in around 3ms.

0ms 100ms 300ms 500ms 700ms 1000ms

2.94ms

Related Work To the best of our knowledge, there is no graphical approach that enables ex-
pressing such constraint types for object-centric logs. However, if the log would be flattened
on orders as a single case notion, LTL-based constraint approaches like DECLARE [10] with
extensions for time durations might be able to express this specific constraint directly in LTL.

73

Chapter 6. Evaluation

Confirm Two Orders by a Customer in the Order They Were Placed

“
o2, o3︷ ︸︸ ︷

Two orders by the same

o1︷ ︸︸ ︷
customer

e2, e3︷ ︸︸ ︷
placed after each other︸ ︷︷ ︸

Q1

should also be

e4, e5︷ ︸︸ ︷
confirmed chronologically.︸ ︷︷ ︸

Q2

”

The UI representation of this constraint is shown on the top right,
where Q1 corresponds to the parent and Q2 to the child node.
First, Q1 queries two orders objects associated with the same cus-
tomer and their corresponding place order events. Addition-
ally, a time-between-events predicate filters these events to only
those where e2 occurs at least some time (0.01 seconds) before e3.
Next, for all such order combination bindings, the confirm order
events e4 and e5, associatedwith the orders o2 and o3, respectively,
are queried in Q2. The constraint regarding the time difference be-
tween e4 and e5 is implemented in Q1 and is then propagated up
using the SAT predicate in Q2. In particular, this constraint can also
be expressed using just a single node (shown on the bottom right),
by combining Q1 and Q2 and simply removing the SAT constraint.
However, the constraint formulation using two nodes might be eas-
ier to read and understand for unfamiliar users.
Evaluation ResultsOverall, 133555 combinations of placed orders
by the same customer are considered, for 0.3% of which the con-
straint is not satisfied, amounting to 397 violated bindings. The
very large number of considered bindings in this complex con-
straint leads to a higher than previously encountered execution
time, with a mean of around 223ms for the formulation using two
nodes. For the single node formulation, the execution time is mea-
surably faster with a mean of around 141ms, because of the re-
duced overhead that occurs in the recursive evaluation, for exam-
ple when checking if the bindings of the child node are satisfied.

0ms 100ms 300ms 500ms 700ms 1000ms

223.17ms

(two nodes)

0ms 100ms 300ms 500ms 700ms 1000ms

141.11ms

(single node)

Related Work None of the considered related work for visual
queries or constraints allow specifying this constraint, as it involves
two object instances of the same object type. In particular, the gen-
eral type of query, in this example involving two orders by the
same customer, demonstrates the very high expressiveness of our
approach as well as the limitations of previous work.

A

Object Variables
 o1: customers
 o2: orders
 o3: orders

Event Variables
 e2: place order
 e3: place order

Filters

 o2 e2

 o3 e3

 e2 e3 0.01s - ∞

 o1 o2

 o1 o3

Constraints

SAT�A�

133555

0.3%
397

Object Variables

Event Variables
 e4: confirm order

 e5: confirm order

Filters

 o2 e4

 o3 e5

Constraints

 e4 e5 0.01s - ∞

133555

0.3%
397

or

Object Variables
 o1: customers
 o2: orders
 o3: orders

Event Variables
 e2: place order
 e3: place order
 e4: confirm order

 e5: confirm order

Filters

 o2 e2

 o3 e3

 e2 e3 0.01s - ∞

 o1 o2

 o1 o3

 o2 e4

 o3 e5

Constraints

 e4 e5 0.01s - ∞

133555

0.3%
397

74

Chapter 6. Evaluation

Items Delivered Quickly After Placement Or Out Of Stock (Automatically Discovered)

“Every
o1︷︸︸︷
item︸︷︷︸
Q1

should be

e4︷ ︸︸ ︷
delivered quickly after︸ ︷︷ ︸

Q4

order

e3︷ ︸︸ ︷
placement︸ ︷︷ ︸
Q2

or be recorded as being

e2︷ ︸︸ ︷
out of stock︸ ︷︷ ︸

Q5

once︸︷︷︸
Q3

.”

This constraint consists of Q1 through Q5, numbered
from top to bottom, left to right in the query tree
constraint. This structure is typical for automatically
discovered OR constructs: The common variable
(o1) is queried at Q1 and the two OR conditions are
implemented using two nodes each.
Evaluation Results The root node has 7659 out-
put bindings, of which 738 (9.64%) are violated.
Evaluating this constraint takes around 23ms.

0ms 100ms 300ms 500ms 700ms 1000ms

22.8ms

Related Work This constraint cannot be modeled in
any of the considered object-centric approaches, as it
is an OR construct between a count- and eventually-
follows part. Generally, however, flat OR constructs
can be implemented in DECLARE [10].

A

X

B

Y

Object Variables
 o1: items

Event Variables

Filters

Constraints

OR�A,B�

7659

9.64%
738

Object Variables

Event Variables
 e3: place order

Filters

 o1 e3

Constraints

|X| � 1

7659

25.92%
1985

Object Variables

Event Variables
 e4: package delivered

Filters

 o1 e4

 e3 e4 0 - 1.38w

Constraints

5674

Object Variables

Event Variables

Filters

Constraints

|Y| � 1

7659

79.84%
6115

Object Variables

Event Variables
 e2: item out of stock

Filters

 o1 e2

Constraints

1544

Order Paid Fast After Confirmation Or Payment Reminder (Automatically Discovered)

“Every
o1︷︸︸︷

order︸︷︷︸
Q1

should either be

e4︷︸︸︷
paid quickly after︸ ︷︷ ︸

Q4

e3︷ ︸︸ ︷
confirmation︸ ︷︷ ︸

Q2

or at least one︸ ︷︷ ︸
Q3

e2︷ ︸︸ ︷
payment reminder should be sent︸ ︷︷ ︸

Q5

.”

The constraint structure is very similar to the pre-
viously presented constraint. In fact, this automati-
cally discovered constraint is again an OR construct
of an eventually-follows and count constraint subcon-
straint.
Evaluation Results In the input OCED, this root
constraint node is violated for 286 of the 2000
considered order object bindings, accounting for
14.3%. It can be evaluated in around 6ms.

0ms 100ms 300ms 500ms 700ms 1000ms

6.1ms

RelatedWork Like the previous example, this type of
constraint is again not expressible in any of the con-
sidered object-centric constraint approaches.

A

X

B

Y

Object Variables
 o1: orders

Event Variables

Filters

Constraints

OR�A,B�

2000

14.3%
286

Object Variables

Event Variables
 e3: confirm order

Filters

 o1 e3

Constraints

|X| � 1

2000

36.45%
729

Object Variables

Event Variables
 e4: pay order

Filters

 o1 e4

 e3 e4 0 - 1.53w

Constraints

1271

Object Variables

Event Variables

Filters

Constraints

|Y| � 1

2000

77.85%
1557

Object Variables

Event Variables
 e2: payment reminder

Filters

 o1 e2

Constraints

566

75

Chapter 6. Evaluation

6.2.2 BPI Challenge 2017 OCED

Query Offer Creations and Cancellations with Eventually-Follows

“Query all

e1,e2︷ ︸︸ ︷
creation and cancel events associated with

o1︷ ︸︸ ︷
same offer, where the create event occurs first.︸ ︷︷ ︸

Q1

”

This query corresponds to the Cypher query shown in Code 2
in Chapter 2. For simplicity, we assume that no two events oc-
cur at the exactly same time, and thus this query effectively
filters only eventually-follows relations between e1 and e2.
Evaluation Results This query constructs 20898 output bind-
ings in total, just like the Cypher query from Code 2. In our
implementation, evaluating this query takes on average around
37ms, which is significantly less than the execution time of the
Cypher query, reported by the authors of [29] as 140ms.

0ms 100ms 300ms 500ms 700ms 1000ms

37.31ms

Related Work Such queries can be expressed in most existing
process instance querying approach we covered, in particular
in [27, 29]. However, none of these approaches allow for vi-
sual construction of this query and [27] also does not focus on
object-centricity, which might limit similar queries which ad-
ditionally involve another object type.

Object Variables
 o1: Offer

Event Variables
 e1: O_Created
 e2: O_Cancelled

Filters

 o1 e1

 o1 e2

 e1 e2 0s - ∞

Constraints

20898

At Least One Offer Sent Quickly After Application Accepted

“For every
e1︷ ︸︸ ︷

accepted

o1︷ ︸︸ ︷
application︸ ︷︷ ︸
Q1

there should be at least one

o2︷︸︸︷
offer

e2︷ ︸︸ ︷
sent out within 2 hours after acceptance.︸ ︷︷ ︸

Q2

”

Q1 first queries all accepted applications and then constraints
that there should be at least one child binding inQ2. Q2 queries
all offers related to this application and offer sent events that
occur within 2 hours of the application acceptance event.
Evaluation Results This constraint constructs 31509 output
bindings in total, of which 1586 are violated, correspond-
ing to 5.03%. Evaluating this constraint takes around 75ms.

0ms 100ms 300ms 500ms 700ms 1000ms

75.32ms

Related Work This constraint cannot be modeled in any of
the considered approaches, as it involves an eventually-follows
constraint limiting the maximum duration between events re-
lated to different objects of different object types, which are
linked through object-to-object relationships.

A

Object Variables
 o1: Application

Event Variables
 e1: A_Accepted

Filters

 o1 e1

Constraints

|A| � 1

31509

5.03%
1586

Object Variables
 o2: Offer

Event Variables
 e2: O_Sent (mail and onli…

O_Sent (online only)

Filters

 o1 o2

 o2 e2

 e1 e2 0 - 2h

Constraints

33754

76

Chapter 6. Evaluation

Applications are First Created Exactly Once

“Every
o1︷ ︸︸ ︷

Application︸ ︷︷ ︸
Q1

should be

e1︷ ︸︸ ︷
created︸ ︷︷ ︸
Q2

once initially︸ ︷︷ ︸
Q3

. ”

The UI representation of this constraint is again shown on the
right, where Q1, Q2, and Q3 are shown from the top to the
bottom. First, Q1 queries all Application objects. Next, all
A Create Application events e1 related to the application
o1 are queried inQ2. Q3 queries all events of other event types
which occur before e1. Regarding the constraints, Q2 is satis-
fied if there is no such event (i.e., e1 is the first event involving
o1). Q1 is then satisfied if there is exactly one child binding in
Q2 and this child binding is satisfied in Q2.
Evaluation Results In the input OCED, this constraint is
never violated. 31509 bindings are constructed for Q1 and
Q2 each. For Q3 no binding is constructed, which is also
clear as otherwise the constraint would be violated for at least
one binding. Evaluating this constraint takes around 47.6ms.

0ms 100ms 300ms 500ms 700ms 1000ms

47.66ms

Related Work This constraint corresponds to a traditional
DECLARE construct, specifying an initial activity and that
this activity should be executed exactly once [10]. However,
DECLARE, of course, considers only traditional event data
and cannot represent this constraint if not flattened on the
Application object type.

A

B

Object Variables
 o1: Application

Event Variables

Filters

Constraints

|A| � 1

SAT�A�

31509

0%
0

Object Variables

Event Variables
 e1: A_Create Application

Filters

 o1 e1

Constraints

|B| � 0

31509

0%
0

Object Variables

Event Variables
 e2: A_Accepted,

A_Cancelled,
A_Complete,
A_Concept,
A_Denied,
A_Incomplete,
A_Pending,
A_Submitted,
A_Validating

Filters

 o1 e2

 e2 e1 1s - ∞

Constraints

0

77

Chapter 6. Evaluation

Offers Are Either Cancelled or Returned (Automatically Discovered)

“Every
o1︷︸︸︷
offer︸︷︷︸
Q1

should either be

e2︷ ︸︸ ︷
returned︸ ︷︷ ︸

Q4

exactly once︸ ︷︷ ︸
Q2

or

e3︷ ︸︸ ︷
cancelled︸ ︷︷ ︸

Q5

exactly once︸ ︷︷ ︸
Q3

.”

The root node, corresponding to Q1, queries
all offer objects and implements an OR con-
straint of the two children Q2 and Q3. These
children are satisfied if there is exactly one
child binding in Q4 and Q5, respectively.
Evaluation Results The root node con-
structs 42995 output bindings in total, of
which 1247 (2.9%) are violated. Evalu-
ating this constraint takes around 90ms.

0ms 100ms 300ms 500ms 700ms 1000ms

89.99ms

Related Work This constraint cannot be
modeled in any of the considered approaches,
as it contains an OR construct between two
parts, each specifying that there should be ex-
actly one event of a specific type per order.

A

X

B

Y

Object Variables
 o1: Offer

Event Variables

Filters

Constraints

OR�A,B�

42995

2.9%
1247

Object Variables

Event Variables

Filters

Constraints

|X| � 1

42995

51.39%
22097

Object Variables

Event Variables
 e3: O_Cancelled

Filters

 o1 e3

Constraints

20898

Object Variables

Event Variables

Filters

Constraints

|Y| � 1

42995

45.8%
19690

Object Variables

Event Variables
 e2: O_Returned

Filters

 o1 e2

Constraints

23305

Applications Are Accepted Quickly Or Submitted Online (Automatically Discovered)

“Every
o1︷ ︸︸ ︷

application︸ ︷︷ ︸
Q1

should either be

e4︷ ︸︸ ︷
accepted︸ ︷︷ ︸

Q4

quickly after being

e3︷ ︸︸ ︷
created︸ ︷︷ ︸

Q2

or

e2︷ ︸︸ ︷
submitted online︸ ︷︷ ︸

Q5

exactly once︸ ︷︷ ︸
Q3

.”

The A Submitted activity corresponds to an
online submission. Thus, this constraint im-
plies that applications not submitted online are
accepted quickly. The five query tree nodes
correspond to Q1 through Q5, ordered from
the top to bottom and left to right.
Evaluation Results The root node has 31509
output bindings, of which 758 (2.41%) are
violated. Evaluation takes around 84ms.

0ms 100ms 300ms 500ms 700ms 1000ms

84.35ms

Related Work This constraint cannot be
modeled in any of the considered approaches,
as it is an OR construct between a count- and
eventually-follows part.

A

X

B

Y

Object Variables
 o1: Application

Event Variables

Filters

Constraints

OR�A,B�

31509

2.41%
758

Object Variables

Event Variables

Filters

Constraints

|Y| � 1

31509

35.18%
11086

Object Variables

Event Variables
 e2: A_Submitted

Filters

 o1 e2

Constraints

20423

Object Variables

Event Variables
 e3: A_Create Application

Filters

 o1 e3

Constraints

|X| � 1

31509

33.63%
10598

Object Variables

Event Variables
 e4: A_Accepted

Filters

 o1 e4

 e3 e4 0 - 1.42d

Constraints

20911

78

Chapter 6. Evaluation

6.3 Performance Analysis

In the previous section, we already presented execution times for the considered examples. In this
section, we now focus on evaluating the runtime performance and scalability of our implementa-
tion in more detail. A challenging aspect of the high expressiveness of our query tree constraint
is that the evaluation time heavily depends on the type of modeled constraint or query. As such,
we cannot give a single expected runtime for evaluating arbitrary queries. Instead, we present a
few simple query scenarios and argue about the expected runtime trend across different OCEDs,
encompassed by a scaling factor, afterwards comparing these estimations with measurements.
Additionally, we explore the scalability of a single complex constraint in more detail, creating
artificial OCEDs of different sizes and measuring the resulting execution time.

6.3.1 Query & Constraint Scenarios

We explore different query or constraint scenarios, which can be formulated in multiple different
OCEDs. The following scenarios are considered:

S1 Bind one object of a specified type.
S2 Bind an object and a related event or object.
S3 Bind an object and do a nested query for a set of related objects or events, evaluate a constraint

regarding the number of elements in this set.
S4 Bind two objects without specifying any predicates linking them.

To quantify the expected scalability behavior for each considered OCED and scenario, we deter-
mine a Scaling Factor for each configuration, where a factor of 1 corresponds to 1000 instances
or bindings. This factor corresponds to the maximal number of output bindings considered for
each query tree node. For example, for S1, the expected scaling factor is the number of instances
of the specified object type. Below, we describe how we calculated the scaling factors:

Procure-to-Pay
S1 Object Type: purchase requisition. There are 927 such objects, resulting in a scaling factor of 0.927.
S2 Object Type: purchase requisition, related object type: quotation. There are 927 purchase requi-

sition objects, each with exactly 1 related quotation object, resulting in a scaling factor of 0.927.
S3 See S1/S2, as the maximum number of considered bindings stays the same. Scaling factor: 0.927
S4 927 objects of type purchase requisition, 1598 objects of type purchase order, yielding a scaling

factor of 1481.346
Order Management

S1 Object Type: orders. There are 2000 order objects, resulting in a scaling factor of 2.
S2 Object Type: orders, related event type: pay order. There are 2000 order objects each with 1 pay

order event, resulting in a scaling factor of 2.
S3 See S1/S2, as the maximum number of considered bindings stays the same. Scaling factor: 2
S4 2000 objects of type orders, 15 objects of type customers, yielding a scaling factor of 30

Container Logistics
S1 Object Type: Handling Unit. There are 10579 handling unit objects in the log, resulting in a scaling

factor of 10.579.
S2 Object Type: Handling Unit, related event type: Load Truck. There are 10553 instances of such related

object and events, resulting in a scaling factor of 10.553
S3 See S1, as first only the handling units are quried. Scaling factor: 10.579.
S4 10579 objects of type Handling Unit, 6 objects of type Truck, yielding a scaling factor of 63.474.

BPI Challenge 2017
S1 Object Type: Application. There are 31509 such objects in the log, resulting in a scaling factor of 31.509.
S2 Object Type: Application, related event type: A Complete. There are 31362 instances of such related

object and events, resulting in a scaling factor of 31.362
S3 See S1, as first only an application is queried. Scaling factor: 31.509.
S4 31509 objects of type Application, 149 objects of type Case R, yielding a scaling factor of 4694.841.

79

Chapter 6. Evaluation

Figure 6.3 shows the measured execution time for each scenario, indicating a trendline of how
the execution time scales together with the OCED scaling factor. In all considered scenarios, the
execution time seems to scale linearly with the scaling factor. This supports our assumption that
for the most common constraint and query situations, the execution time of evaluating them
scales linearly with the number of output bindings. The number of output bindings themselves
scale linearly with the relevant aspects of the input OCED (e.g., number of objects of a speci-
fied type, or average number of related objects), of course depending on the considered query
tree.

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Execution Times for Scenario S1

Scaling Factor

D
ur

at
io

n
(s

)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

Execution Times for Scenario S2

Scaling Factor

D
ur

at
io

n
(s

)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Execution Times for Scenario S3

Scaling Factor

D
ur

at
io

n
(s

)

0 1000 2000 3000 4000

0

0.5

1

1.5

2

2.5

Execution Times for Scenario S4

Scaling Factor

D
ur

at
io

n
(s

)

Figure 6.3: Scatter plots showing the execution times for evaluating the scenarios across different
OCEDs with scaling factors derived from the OCED based on the scenario. Each scenario was
evaluated 10 times for eachOCED and a trendline for each scenario indicates the scalability trend.

6.3.2 Scalability for Complex Constraints

To evaluate how the execution time for evaluating complex constraints grows when considering
larger event data, we modified the simulation model which was used to create the OCEL 2.0
order management logs from [36]. In particular, we scaled the number of generated objects of
type orders with a factor k ∈ {1, 2, 3, 4} and additionally either:

a) Also scaled the number of customer objects by the same factor (starting with 15 at k = 1)

b) Kept the number of customers constant at 15 (as in the original log)

The underlying simulation model connects orders to customers randomly. In particular, it can

80

Chapter 6. Evaluation

thus reasonably be assumed, that the number of orders per customer is at least roughly similar
and there are no underlying patterns between specific customers and the number of associated
orders. The number of other object and event instances in the scaled OCED was not manually
influenced and thus follows the simulation mode based on the scaled number of orders and cus-
tomers. For instance, there is still exactly one event of type place order and confirm order
for each order object.

For each factor k ∈ {1, 2, 3, 4}, we created two OCEDs, one with constant customers and one
with scaled number of customers. We then evaluated the constraint for two orders placed by
the same customer we presented in Section 6.2.1 for each constructed OCED and recorded the
execution time of evaluating the constraint. We repeated each measurement 10 times.

To derive the expected scalability trends, we estimate the expected number of output bindings
in each setting under some simplifications. In the constraint, two orders by the same customers
are considered. First, we only consider the related object and event filter predicates and ignore
the time-between-events filter predicate, which only reduces the result by a constant factor. Ad-
ditionally, in the order management OCED, there is exactly one place order and confirm
order per order object, so only considering the bindings of the customer and orders is suffi-
cient to estimate the output binding size. For simplicity, we only consider the average number of
orders per customer NO and the number of customers NC and the corresponding scaling factor
k ∈ {1, 2, 3, 4}, we can estimate the number of considered bindings (i.e., combinations of two
orders by the same customer) in the different settings as:

a) k · NC · (NO · NO) = k · NC · N 2
O

b) NC · (k · NO · k · NO) = k2 · NC · N 2
O

In particular, the scaling factor affects the number of bindings linearly in setting a), and quadrat-
ically in setting b). This might seem counterintuitive, as the overall number of objects in the
OCED in setting b) is smaller than in setting a). However, for this particular constraint, the num-
ber of orders per customer is what translates to a quadratic factor for b). With a constant number
of customers, the number of orders per customer increases by the factor k (and thus k2 for two
orders by the same customer), while for a linearly scaled number of customers, the number of
orders per customer stays the same.

Of course, there are other factors to also consider, like additional specifics of the considered con-
straint or data, and the parallelization of the execution engine. However, the general trend is, in
fact, confirmed by the measured execution times results, which we plotted in Figure 6.4. In par-
ticular, for setting a) when linear scaling of both orders and customers, the execution time also
grows linearly, while in setting b) when keeping the number of customers constant and only in-
creasing the number of orders, a quadratic trend of the execution times could be observed.

81

Chapter 6. Evaluation

0.15s

0.62s

1.44s

2.9s

0.15s
0.31s

0.48s
0.65s

1 2 3 4
0

0.5

1

1.5

2

2.5

3 Constant
Constant

Linear
Linear

Execution Time for 'Confirm Two Orders by a Customer in the Order They Were Placed'

Scaling Factor

E
xe

cu
tio

n
Ti

m
e

(s
)

2000 Orders

15 Customers
2000 Orders

15 Customers

4000 Orders

15 Customers
4000 Orders

30 Customers

6000 Orders

15 Customers
6000 Orders

45 Customers

8000 Orders

15 Customers
8000 Orders

60 Customers

Figure 6.4: Execution times of a constraint involving two orders by the same customer. Con-
stant scaling refers to only increasing the number of orders by a factor and keeping the number
of customers the same, while linear refers to also scaling customers with the same factor. We
repeated each measurement 10 times and plotted the resulting values as a scatter plot. Addition-
ally, the means are shown as larger points and are connected with a spline curve, indicating the
scalability trend. As expected, for the linear scaling, the execution times follow a linear trend.
For a constant number of customers, the execution times increase at a non-constant rate and can
be well described by a quadratic function, which also corresponds to the expected outcome. In
particular, this quadratic trend can be explained by the fact that for a constant number of cus-
tomers, the average number of orders per customer scales linearly. Thus, when considering two
orders by the same customer, two linear factors are multiplied, resulting in quadratic scaling.

82

Chapter 6. Evaluation

6.4 Threats to Validity

Throughout this chapter, we evaluated the constraint and query approach presented in this thesis.
In the qualitative evaluation, we presented some example constraints for different OCED together
with their execution time. The examples demonstrate the features and expressiveness of our
approach, ranging from simple tomore complex constraints and queries. Of course, this selection
only scratches the surface of the types of constraints that are implementable.

Additionally, most of the OCEDs considered in this chapter were rather small and based on
simulated data, as there is a shortage of other publicly available larger OCED based on real-life
processes. As a notable exception, we also considered the BPI Challenge 2017 OCED, which is a
larger real-life dataset.

While we included some example constraints that were automatically discovered, we did not
evaluate the automatic discovery presented in Section 4.5 in more detail, both in terms of quality
and execution performance.

Furthermore, we did not study the expressiveness of our approach compared to related work sys-
tematically, but only by example constraints. Such a systematic evaluation would be interesting
but as many approaches from related work focus on specific different aspects, for example on
aggregated queries or constraints rooted in performance measures, it would also be difficult to
conduct meaningfully.

In the quantitative evaluation, the second part of this chapter, we focused purely on the evalu-
ation time and its scalability. In the scenario analysis, we only considered rather basic types of
queries and constraints, for which we demonstrated that the runtime indeed scales linearly with
the expected scalability factor, which mostly corresponds to the number of considered bindings.
However, we did not cover more complex queries in these scenarios. Later on, in the scalability
experiments for a more complex constraint, only one example constraint was considered and
evaluated on different OCEDs, where the number of instances of certain object types was varied.
It would be interesting to also investigate the scalability of other constraints on this OCED.

83

Chapter 7

Discussion

In this chapter, we discuss design choices made throughout this thesis. In particular, we describe
limitations regarding the scalability of the approach, especially considering the tradeoff between
allowing users to design complex constraints and preventing explosions in the number of out-
put bindings. Additionally, we address and justify our implementation approach consisting of a
custom execution engine against other established querying languages, like SQL.

7.1 Scalability Limitations

Throughout our approach, we focused on allowing very high expressiveness for queries and con-
straints. In particular, binding boxes can bind an arbitrary number of object and event variables
and also contain arbitrary filter predicates. However, with this great power also comes great
responsibility: It is not difficult to construct a binding box with a gigantic output binding set,
even for smaller OCEDs. Simply consider binding many event and object variables to values
of all event and object types and adding no filter predicates. Even if we consider a very small
OCED with only 10 objects, a binding box with 10 object variables assigned to any type would
still yield an output binding set of size 1010 (10 billion) and would most likely not be able to fit
into system memory on most machines. However, this limitation is mostly theoretical. After all,
such an example binding box would have no realistic use case. In particular, while the number of
output bindings can explode in size, it is the responsibility of the user to design useful constraints
that can efficiently be evaluated. One good heuristic to fulfill this responsibility in practice is
making sure that all introduced object and event variables are connected at each step, through
appropriate event-to-object and object-to-object relationship filter predicates.

It is also important to note that these scalability limitations are inherent to the very general
types of constraints expressible in our approach. For instance, general constraints regarding
two orders placed by the same customer can only be evaluated for concrete instantiations (i.e.,
bindings) of the orders and customer. Of course, for certain specific constraints there might be
some optimizations possible, like the ones we explore in Section 4.4 and also implemented in our
tool.

One of the design decisionswemadewith our approachwas not restricting query tree constraints
or binding boxes to only allow constructs corresponding to the previously mentioned heuristic
(e.g., requiring that all introduced variables are somehow connected through predicates). We
believe that allowing the creation of unusual constraints with disconnected parts is the better

84

Chapter 7. Discussion

choice, as it increases the set of implementable constraints and also keeps the approach for-
malization simpler. Furthermore, there are some less strict mitigation strategies to prevent users
from accidentally designing problematic constraints, for instance, by showing a warning for such
unconnected variables in the tool UI. Moreover, in future development of the OCPQ tool, also
adding safeguards to make the execution engine more robust is an important aspect. For in-
stance, this could be achieved by limiting the number of constructed output bindings to prevent
overload caused by very large queries. Another approach could be to implement lazy evaluation
with streaming support for the resulting output bindings, which could allow constructing even
larger output binding sets and would also allow stopping evaluation early if enough interesting
results are received.

7.2 Why not SQL?

In this thesis, we proposed a custom implementation of an execution engine for constructing the
queried bindings and checking the included constraints. As the OCEL 2.0 standard for object-
centric event logs also includes SQLite as an exchange format [2], it begs the question whether
implementing a simple translation between our approach and SQL queries might be a better
choice than implementing an own execution engine. In the following, wewill shortly discusswhy
we opted for a dedicated implementation, motivated by both flexibility and performance.

First, we need to mention some advantages that an implementation rooted in SQLite would have.
SQL iswell-supported across different architectures and has a rich ecosystem around it. Secondly,
SQL is very well optimized, generally speaking. At the same time, SQL has several different
use cases and is not specialized for the specific types of queries at hand. Moreover, while SQL
supports many features and is quite flexible in general, translating our proposed very expressive
and extensible predicate statements to SQL might not even be possible. There, the flexibility of
a full general programming language triumphs over the large number of statements and queries
supported in SQL.

Consider the query tree shown in Figure 7.1 as well as the SQL query from Code 6. Both im-
plement the same querying of two orders, o1 and o2, with corresponding place order events
e1 and e2, both from the same customer o0, such that e1 happens before e2. In the SQL, the
binding predicates from Figure 7.1 are translated to INNER JOIN constructs and WHERE clauses.
Executing the SQL query shown in Code 6 takes around 19000ms. Executing a similar query in
our tool takes only roughly 200ms. This implies that, at least for evaluating this example, the
SQLite query is around 100 times slower than our tool.

There might be more efficient ways to structure OCEL 2.0 database tables and execute queries
in SQL, specifically focused on our use case. However, optimization of the query plan and using
heuristics to optimize execution time is generally considered a strong suit of SQL.The SQLite file
thatwas used for this example evaluation had existing indexes for all interesting JOIN-operations.
The query execution plan for the example query, which details how the query is handled, also
indicates that query optimization does indeed happen (e.g., initially the second event is queried,
then later an index is used to find the corresponding order object in E202). However, our im-
plementation is specifically designed for such types of queries and also builds abstractions and
structures to efficiently construct output binding sets. Additionally, as the construction of one
element of the output binding sets does not influence other elements, it is heavily parallelized in
our implementation. Also, more complex predicates that are not easily representable in SQL can
be added to our approach, as bindings are checked for predicates using a full programming lan-

85

Chapter 7. Discussion

guage. For instance, the CEL extension described in Subsection 4.6.1 and the corresponding bind-
ing predicates introduced there could not be easily implemented in a SQL-based approach.

Object Variables
 o1: customers
 o2: orders
 o3: orders

Event Variables
 e2: place order
 e3: place order

Filters

 o2 e2

 o3 e3

 e2 e3 0.01s - ∞

 o1 o2

 o1 o3

Constraints

133555

Figure 7.1: An equivalent query to the SQL.

86

Chapter 7. Discussion

1 SELECT
2 A0.ocel_id AS o0,
3 A1.ocel_id AS o1,
4 A2.ocel_id AS o2,
5 E1.ocel_id AS e1,
6 E2.ocel_id AS e2
7 FROM
8 object AS A0,
9 object AS A1,

10 object AS A2,
11 event AS E1,
12 event AS E2
13 INNER JOIN object_object AS O2O ON O2O.ocel_source_id = A0.ocel_id
14 AND O2O.ocel_target_id = A1.ocel_id
15 INNER JOIN object_object AS O2O2 ON O2O2.ocel_source_id = A0.ocel_id
16 AND O2O2.ocel_target_id = A2.ocel_id
17 INNER JOIN event_object AS E2O ON E2O.ocel_event_id = E1.ocel_id
18 AND E2O.ocel_object_id = A1.ocel_id
19 INNER JOIN event_object AS E2O2 ON E2O2.ocel_event_id = E2.ocel_id
20 AND E2O2.ocel_object_id = A2.ocel_id
21 INNER JOIN event_PlaceOrder AS E_PO ON E_PO.ocel_id = e1
22 INNER JOIN event_PlaceOrder AS E_PO2 ON E_PO2.ocel_id = e2
23 AND E_PO.ocel_time < E_PO2.ocel_time
24 WHERE
25 A0.ocel_type = 'customers'
26 AND A1.ocel_type = 'orders'
27 AND A2.ocel_type = 'orders'
28 AND E1.ocel_type = 'place order'
29 AND E2.ocel_type = 'place order'
30 AND o1 != o2
31 AND E_PO.ocel_time < E_PO2.ocel_time

Code 6: SQL query statement for selecting two orders of the same customer, analogous to the
query shown in Figure 7.1 in our approach.

1 QUERY PLAN
2 |--SEARCH E2 USING INDEX type (ocel_type=?)
3 |--SEARCH E_PO2 USING INDEX idx_event_PlaceOrder_ocel_id (ocel_id=?)
4 |--SEARCH E2O2 USING COVERING INDEX idx_event_object_composite_pk (ocel_event_id=?)
5 |--SEARCH A2 USING INDEX ID (ocel_id=?)
6 |--SEARCH E1 USING INDEX type (ocel_type=?)
7 |--SEARCH E_PO USING INDEX idx_event_PlaceOrder_ocel_id (ocel_id=?)
8 |--SEARCH E2O USING COVERING INDEX idx_event_object_composite_pk (ocel_event_id=?)
9 |--BLOOM FILTER ON A1 (ocel_id=?)

10 |--SEARCH A1 USING INDEX ID (ocel_id=?)
11 |--SEARCH O2O2 USING INDEX idx_object_object_ocel_target_id (ocel_target_id=?)
12 |--BLOOM FILTER ON A0 (ocel_id=?)
13 |--SEARCH A0 USING INDEX ID (ocel_id=?)
14 `--SEARCH O2O USING COVERING INDEX o2o (ocel_source_id=? AND ocel_target_id=?)

Code 7: The SQL query plan for the SQL statement from Code 6.

87

Chapter 8

Conclusion

In this thesis, we presented an object-centric query and constraint approach, which allows nested
querying of bindings (i.e., combinations of process instances – events and objects). Constraints
can be added to label the output bindings of a query as either allowed or forbidden. Our approach
is based on the concepts of the aforementioned variable bindings, which encompass combinations
of named process instances as well as binding predicates, which induce a set of variables for which
they are satisfied. Through its flexibility, the presented query and constraint approach is very
expressive and allows querying situations and formulating constraints that are not possible to
express in prior work. We first introduced the proposed declarative query and constraint ap-
proach formally. Next, we described how the presented declarative concepts can be mapped to
an algorithm that efficiently computes the required outputs of queries and constraints. We high-
lighted how naive approaches to this problem run into scalability and performance issues already
for relatively small data. As a solution, we present more sophisticated algorithmic approaches,
consisting of a recursive algorithm for evaluating nested queries and constraints, as well as a
binding expansion ordering strategy, which enables efficient construction of query output bind-
ings. These general algorithmic procedures were also implemented in the software tool OCPQ
we developed, consisting of a performance-centric execution engine and an interactive editor
frontend. The frontend constraint editor also allows inexperienced users to design, evaluate, and
analyze the results of simple to complex queries and constraints. Additionally, we showcased
how different types of constraints can automatically be discovered based on an input OCED.
These types of constraints, count constraints and eventually-follows constraints, can rather eas-
ily be mined based on input data and are simultaneously very relevant for real-life processes.
Moreover, we demonstrated how also more complex types of constraints can be discovered, by
presenting a way to combine specific constraint parts into an OR-construct. In our evaluation,
we wanted to show two main important aspects of our approach: 1) that it is very expressive
and can formulate interesting, simple or complex queries and constraints conveniently, that were
otherwise not possible to model in existing related work and 2) that even though we allow for
such a high expressiveness, evaluating queries and constraints is still very fast and can also be
applied on large, real-life datasets. To address 1) we presented more than ten different con-
straints and queries, demonstrating the high expressiveness and convenient representation of
constraints. Additionally, to also address 2) partly, we recorded the time it takes to evaluate all
of these examples and plotted the results. All the measured execution times were way below 1s,
even for larger real-life OCED containing more than a million events, indicating very good run-
time performance. Moreover, we also specifically analyzed the scalability of our implementation

88

Chapter 8. Conclusion

by creating artificial OCED datasets, manipulating the number of objects of certain object types.
Through this analysis, we confirmed that for the most common query and constraint constructs,
the runtime scales linearly with the size of the input OCED. Finally, we also discussed the design
choices we made throughout this thesis.

Future Work The proposed query and constraint approach is inherently extendable by ex-
panding the collections of binding predicates introduced in this thesis. For example, interesting
predicate types not considered in this thesis are predicates based on directly-follows relationships
between event variables. In particular, in the context of OCED, directly-follow predicates should
also consider an additional object variable, corresponding to the object instance for which the
two events should directly follow each other. There are heaps of other predicate types to consider.
For instance, ranging from performance-metric inspired predicates, like a maximum waiting or
processing time of events, to convenient shorthands for predicates already expressible by more
complex constructs in the current approach, like specifying that an event should be the first event
associated with an object.

Apart from extensions of the possible predicates, also more fundamental additions are intriguing
to consider. For example, expanding the concept of variable bindings to also allow other types of
variables or values, ranging from attribute values, like numbers, to sets of queried child bindings.
As a first step, the extension idea based on arbitrary annotation values of output bindings should
be formalized and implemented in OCPQ.

We also shortly covered related work on event log filtering approaches, which allow specifying
filters as well as analyzing and exporting the resulting filtered view on the data. The querying
approach we presented here could also build the foundation of a filtering approach, where future
work could address how exactly a complete OCED can be constructed based on queries.

Furthermore, analyzing the expressiveness of the proposed approach and systematically com-
paring it to related work would be of interest.

Finally, evaluating the presented approach on more real-life datasets would be of high impor-
tance, both in terms of evaluating the practical applicability of the approach conceptually and
investigating the runtime performance and scalability on even larger data. Depending on the
size of the considered dataset, future work could also consider evaluating queries in a distributed
manner across multiple machines, expanding on the existing parallelization of the implementa-
tion.

89

Bibliography

[1] Wil M. P. van der Aalst. Object-Centric Process Mining: Dealing with Divergence and
Convergence in Event Data. In Peter Csaba Ölveczky and Gwen Salaün, editors, Software
Engineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway,
September 18-20, 2019, Proceedings, volume 11724 of Lecture Notes in Computer Science, pages
3–25. Springer, 2019. doi: 10.1007/978-3-030-30446-1_1. URL https://doi.org/10.
1007/978-3-030-30446-1_1.

[2] Alessandro Berti, István Koren, Jan Niklas Adams, Gyunam Park, Benedikt Knopp, Nina
Graves, Majid Rafiei, Lukas Liß, Leah Tacke genannt Unterberg, Yisong Zhang, Christo-
pher T. Schwanen, Marco Pegoraro, and Wil M. P. van der Aalst. OCEL (Object-Centric
Event Log) 2.0 Specification. CoRR, abs/2403.01975, 2024. doi: 10.48550/ARXIV.2403.01975.
URL https://doi.org/10.48550/arXiv.2403.01975.

[3] Alessandro Berti, Marco Montali, and Wil M. P. van der Aalst. Advancements and
Challenges in Object-Centric Process Mining: A Systematic Literature Review. CoRR,
abs/2311.08795, 2023. doi: 10.48550/ARXIV.2311.08795. URL https://doi.org/10.
48550/arXiv.2311.08795.

[4] Wil M. P. van der Aalst. Object-Centric Process Mining: Unraveling the Fabric of Real
Processes. Mathematics, 11(12):2691, January 2023. ISSN 2227-7390. doi: 10.3390/
math11122691. URL https://www.mdpi.com/2227-7390/11/12/2691.

[5] Wil M. P. van der Aalst and Alessandro Berti. Discovering Object-centric Petri Nets. Fun-
dam. Informaticae, 175(1-4):1–40, 2020. doi: 10.3233/FI-2020-1946.

[6] Gyunam Park and Wil M. P. van der Aalst. Monitoring Constraints in Business Pro-
cesses Using Object-Centric Constraint Graphs. In Marco Montali, Arik Senderovich, and
Matthias Weidlich, editors, Process Mining Workshops - ICPM 2022 International Workshops,
Bozen-Bolzano, Italy, October 23-28, 2022, Revised Selected Papers, volume 468 of Lecture
Notes in Business Information Processing, pages 479–492. Springer, 2022. doi: 10.1007/
978-3-031-27815-0_35. URL https://doi.org/10.1007/978-3-031-27815-0_35.

[7] Tijs Slaats. Declarative and Hybrid Process Discovery: Recent Advances and Open Chal-
lenges. J. Data Semant., 9(1):3–20, 2020. doi: 10.1007/S13740-020-00112-9. URL https:
//doi.org/10.1007/s13740-020-00112-9.

[8] Maja Pesic and Wil M. P. van der Aalst. A Declarative Approach for Flexible Business
Processes Management. In Johann Eder and Schahram Dustdar, editors, Business Process
Management Workshops, BPM 2006 International Workshops, BPD, BPI, ENEI, GPWW, DPM,
Semantics4ws, Vienna, Austria, September 4-7, 2006, Proceedings, volume 4103 of Lecture

90

https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.48550/arXiv.2403.01975
https://doi.org/10.48550/arXiv.2311.08795
https://doi.org/10.48550/arXiv.2311.08795
https://www.mdpi.com/2227-7390/11/12/2691
https://doi.org/10.1007/978-3-031-27815-0_35
https://doi.org/10.1007/s13740-020-00112-9
https://doi.org/10.1007/s13740-020-00112-9

Bibliography

Notes in Computer Science, pages 169–180. Springer, 2006. doi: 10.1007/11837862_18. URL
https://doi.org/10.1007/11837862_18.

[9] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly Declarative Ser-
vice Flow Language. In Mario Bravetti, Manuel Núñez, and Gianluigi Zavattaro, editors,
Web Services and Formal Methods, Third International Workshop, WS-FM 2006 Vienna, Aus-
tria, September 8-9, 2006, Proceedings, volume 4184 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2006. doi: 10.1007/11841197_1. URL https://doi.org/10.1007/
11841197_1.

[10] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. DECLARE: Full Support
for Loosely-Structured Processes. In 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), 15-19 October 2007, Annapolis, Maryland, USA, pages
287–300. IEEE Computer Society, 2007. doi: 10.1109/EDOC.2007.14.

[11] Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio Storari. Inducing
Declarative Logic-BasedModels from Labeled Traces. In Gustavo Alonso, Peter Dadam, and
Michael Rosemann, editors, Business Process Management, 5th International Conference, BPM
2007, Brisbane, Australia, September 24-28, 2007, Proceedings, volume 4714 of Lecture Notes in
Computer Science, pages 344–359. Springer, 2007. doi: 10.1007/978-3-540-75183-0_25. URL
https://doi.org/10.1007/978-3-540-75183-0_25.

[12] Andrew Cropper and Sebastijan Dumancic. Inductive Logic Programming At 30: A New
Introduction. J. Artif. Intell. Res., 74:765–850, 2022. doi: 10.1613/JAIR.1.13507. URL https:
//doi.org/10.1613/jair.1.13507.

[13] Fabrizio Maria Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. User-guided discov-
ery of declarative process models. In Proceedings of the IEEE Symposium on Computational
Intelligence and Data Mining, CIDM 2011, Part of the IEEE Symposium Series on Computa-
tional Intelligence 2011, April 11-15, 2011, Paris, France, pages 192–199. IEEE, 2011. doi:
10.1109/CIDM.2011.5949297.

[14] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules.
In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile,
Chile, pages 487–499. Morgan Kaufmann, 1994. URL http://www.vldb.org/conf/
1994/P487.PDF.

[15] Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst. Efficient
Discovery of Understandable Declarative Process Models from Event Logs. In Jolita Ralyté,
Xavier Franch, Sjaak Brinkkemper, and Stanislaw Wrycza, editors, Advanced Information
Systems Engineering - 24th International Conference, CAiSE 2012, Gdansk, Poland, June 25-
29, 2012. Proceedings, volume 7328 of Lecture Notes in Computer Science, pages 270–285.
Springer, 2012. doi: 10.1007/978-3-642-31095-9_18. URL https://doi.org/10.1007/
978-3-642-31095-9_18.

[16] Fabrizio Maria Maggi, Claudio Di Ciccio, Chiara Di Francescomarino, and Taavi Kala. Par-
allel algorithms for the automated discovery of declarative process models. Inf. Syst., 74
(Part):136–152, 2018. doi: 10.1016/J.IS.2017.12.002. URL https://doi.org/10.1016/j.
is.2017.12.002.

91

https://doi.org/10.1007/11837862_18
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1613/jair.1.13507
http://www.vldb.org/conf/1994/P487.PDF
http://www.vldb.org/conf/1994/P487.PDF
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1016/j.is.2017.12.002
https://doi.org/10.1016/j.is.2017.12.002

Bibliography

[17] Claudio Di Ciccio and MassimoMecella. On the Discovery of Declarative Control Flows for
Artful Processes. ACM Trans. Manag. Inf. Syst., 5(4):24:1–24:37, 2015. doi: 10.1145/2629447.

[18] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative Event-Based Workflow
as Distributed Dynamic Condition Response Graphs. In Kohei Honda and AlanMycroft, ed-
itors, ProceedingsThirdWorkshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, PLACES 2010, Paphos, Cyprus, 21st March 2010, volume 69
of EPTCS, pages 59–73, 2010. doi: 10.4204/EPTCS.69.5.

[19] Christoffer Olling Back, Tijs Slaats, Thomas Troels Hildebrandt, and Morten Marquard.
DisCoveR: Accurate and efficient discovery of declarative process models. Int. J. Softw.
Tools Technol. Transf., 24(4):563–587, 2022. doi: 10.1007/S10009-021-00616-0. URL https:
//doi.org/10.1007/s10009-021-00616-0.

[20] Søren Debois, Thomas T. Hildebrandt, Paw Høvsgaard Laursen, and Kenneth Ry Ulrik.
Declarative process mining for DCR graphs. In Ahmed Seffah, Birgit Penzenstadler, Ca-
rina Alves, and Xin Peng, editors, Proceedings of the Symposium on Applied Comput-
ing, SAC 2017, Marrakech, Morocco, April 3-7, 2017, pages 759–764. ACM, 2017. doi:
10.1145/3019612.3019622.

[21] Viktorija Nekrasaite, Andrew Tristan Parli, Christoffer Olling Back, and Tijs Slaats. Dis-
covering Responsibilities with Dynamic Condition Response Graphs. In Paolo Giorgini and
Barbara Weber, editors, Advanced Information Systems Engineering - 31st International Con-
ference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings, volume 11483 of Lecture Notes in
Computer Science, pages 595–610. Springer, 2019. doi: 10.1007/978-3-030-21290-2_37. URL
https://doi.org/10.1007/978-3-030-21290-2_37.

[22] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and Hajo A. Rei-
jers. Imperative versus Declarative Process Modeling Languages: An Empirical Investiga-
tion. In Florian Daniel, Kamel Barkaoui, and Schahram Dustdar, editors, Business Process
Management Workshops - BPM 2011 International Workshops, Clermont-Ferrand, France, Au-
gust 29, 2011, Revised Selected Papers, Part I, volume 99 of Lecture Notes in Business Infor-
mation Processing, pages 383–394. Springer, 2011. doi: 10.1007/978-3-642-28108-2_37. URL
https://doi.org/10.1007/978-3-642-28108-2_37.

[23] Cornelia Haisjackl, Irene Barba, Stefan Zugal, Pnina Soffer, Irit Hadar, Manfred Reichert,
Jakob Pinggera, and Barbara Weber. Understanding Declare models: Strategies, pitfalls,
empirical results. Softw. Syst. Model., 15(2):325–352, 2016. doi: 10.1007/S10270-014-0435-Z.
URL https://doi.org/10.1007/s10270-014-0435-z.

[24] Artem Polyvyanyy, Chun Ouyang, Alistair Barros, and Wil M. P. van der Aalst. Process
querying: Enabling business intelligence through query-based process analytics. Decis.
Support Syst., 100:41–56, 2017. doi: 10.1016/J.DSS.2017.04.011. URL https://doi.org/
10.1016/j.dss.2017.04.011.

[25] Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, Elio Masciari, Luigi Pontieri, and Chiara
Pulice. A Framework Supporting the Analysis of Process Logs Stored in Either Relational
or NoSQL DBMSs. In Floriana Esposito, Olivier Pivert, Mohand-Saïd Hacid, Zbigniew W.
Ras, and Stefano Ferilli, editors, Foundations of Intelligent Systems - 22nd International Sym-
posium, ISMIS 2015, Lyon, France, October 21-23, 2015, Proceedings, volume 9384 of Lecture
Notes in Computer Science, pages 52–58. Springer, 2015. doi: 10.1007/978-3-319-25252-0_6.
URL https://doi.org/10.1007/978-3-319-25252-0_6.

92

https://doi.org/10.1007/s10009-021-00616-0
https://doi.org/10.1007/s10009-021-00616-0
https://doi.org/10.1007/978-3-030-21290-2_37
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/s10270-014-0435-z
https://doi.org/10.1016/j.dss.2017.04.011
https://doi.org/10.1016/j.dss.2017.04.011
https://doi.org/10.1007/978-3-319-25252-0_6

Bibliography

[26] JoséMiguel Pérez-Álvarez, Antonio Cancela Díaz, Luisa Parody, AntoniaM. ReinaQuintero,
and María Teresa Gómez-López. Process Instance Query Language and the Process Query-
ing Framework. In Artem Polyvyanyy, editor, Process Querying Methods, pages 85–111.
Springer, 2022. doi: 10.1007/978-3-030-92875-9_4. URL https://doi.org/10.1007/
978-3-030-92875-9_4.

[27] Thomas Vogelgesang, Jessica Ambrosy, David Becher, Robert Seilbeck, Jerome Geyer-
Klingeberg, and Martin Klenk. Celonis PQL: A Query Language for Process Mining. In
Artem Polyvyanyy, editor, ProcessQuerying Methods, pages 377–408. Springer International
Publishing, Cham, 2022. ISBN 978-3-030-92875-9. doi: 10.1007/978-3-030-92875-9_13. URL
https://doi.org/10.1007/978-3-030-92875-9_13.

[28] Klaus Kammerer, Jens Kolb, and Manfred Reichert. PQL - A Descriptive Language for
Querying, Abstracting and Changing Process Models. In Khaled Gaaloul, Rainer Schmidt,
Selmin Nurcan, Sérgio Guerreiro, and Qin Ma, editors, Enterprise, Business-Process and In-
formation Systems Modeling - 16th International Conference, BPMDS 2015, 20th International
Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden, June 8-9, 2015, Pro-
ceedings, volume 214 of Lecture Notes in Business Information Processing, pages 135–150.
Springer, 2015. doi: 10.1007/978-3-319-19237-6_9. URL https://doi.org/10.1007/
978-3-319-19237-6_9.

[29] Stefan Esser and Dirk Fahland. Multi-Dimensional Event Data in Graph Databases. J. Data
Semant., 10(1-2):109–141, 2021. doi: 10.1007/S13740-021-00122-1. URL https://doi.
org/10.1007/s13740-021-00122-1.

[30] Boudewijn van Dongen. BPI Challenge 2017, February 2017. URL https://data.4tu.
nl/articles/_/12696884/1.

[31] Wil M. P. van der Aalst, Alessandro Artale, Marco Montali, and Simone Tritini. Object-
Centric Behavioral Constraints: Integrating Data and Declarative Process Modelling. In
Alessandro Artale, Birte Glimm, and Roman Kontchakov, editors, Proceedings of the 30th
International Workshop on Description Logics, Montpellier, France, July 18-21, 2017, volume
1879 of CEUR Workshop Proceedings. CEUR-WS.org, 2017. URL https://ceur-ws.org/
Vol-1879/paper51.pdf.

[32] Baoxin Xiu, Guangming Li, and Yidan Li. Discovery of Object-Centric Behavioral Con-
straint Models With Noise. IEEE Access, 10:88769–88786, 2022. doi: 10.1109/ACCESS.2022.
3199345.

[33] Jan Niklas Adams, Daniel Schuster, Seth Schmitz, Günther Schuh, and Wil M. P. van der
Aalst. Defining Cases and Variants for Object-Centric Event Data. In Andrea Burattin,
Artem Polyvyanyy, and Barbara Weber, editors, 4th International Conference on Process
Mining, ICPM 2022, Bolzano, Italy, October 23-28, 2022, pages 128–135. IEEE, 2022. doi:
10.1109/ICPM57379.2022.9980730.

[34] Tian Li, Gyunam Park, and Wil M. P. van der Aalst. Checking Constraints for Object-
Centric Process Executions. In Johannes De Smedt and Pnina Soffer, editors, Process Mining
Workshops - ICPM 2023 International Workshops, Rome, Italy, October 23-27, 2023, Revised Se-
lected Papers, volume 503 of Lecture Notes in Business Information Processing, pages 392–405.
Springer, 2023. doi: 10.1007/978-3-031-56107-8_30. URL https://doi.org/10.1007/
978-3-031-56107-8_30.

93

https://doi.org/10.1007/978-3-030-92875-9_4
https://doi.org/10.1007/978-3-030-92875-9_4
https://doi.org/10.1007/978-3-030-92875-9_13
https://doi.org/10.1007/978-3-319-19237-6_9
https://doi.org/10.1007/978-3-319-19237-6_9
https://doi.org/10.1007/s13740-021-00122-1
https://doi.org/10.1007/s13740-021-00122-1
https://data.4tu.nl/articles/_/12696884/1
https://data.4tu.nl/articles/_/12696884/1
https://ceur-ws.org/Vol-1879/paper51.pdf
https://ceur-ws.org/Vol-1879/paper51.pdf
https://doi.org/10.1007/978-3-031-56107-8_30
https://doi.org/10.1007/978-3-031-56107-8_30

Bibliography

[35] Alessandro Berti. Filtering and Sampling Object-Centric Event Logs, May 2022. URL http:
//arxiv.org/abs/2205.01428.

[36] Benedikt Knopp and Wil M.P. van der Aalst. Order management object-centric event log in
OCEL 2.0 standard, October 2023. URL https://doi.org/10.5281/zenodo.8428112.

[37] Jonathan P. Bowen. The Z Notation: Whence the Cause and Whither the Course? In
Zhiming Liu and Zili Zhang, editors, Engineering Trustworthy Software Systems - First In-
ternational School, SETSS 2014, Chongqing, China, September 8-13, 2014. Tutorial Lectures,
volume 9506 of Lecture Notes in Computer Science, pages 103–151. Springer, 2014. doi: 10.
1007/978-3-319-29628-9_3. URL https://doi.org/10.1007/978-3-319-29628-9_3.

[38] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second Edition. Springer,
2016. ISBN 978-3-662-49850-7. doi: 10.1007/978-3-662-49851-4.

[39] Aaron Küsters andWil M. P. van der Aalst. Developing a High-Performance Process Mining
Library with Java and Python Bindings in Rust. CoRR, abs/2401.14149, 2024. doi: 10.48550/
ARXIV.2401.14149. URL https://doi.org/10.48550/arXiv.2401.14149.

[40] Shahrzad Khayatbashi, Olaf Hartig, and Amin Jalali. BPI Challenge
2017 (OCEL), August 2023. URL https://data.4tu.nl/datasets/
6889ca3f-97cf-459a-b630-3b0b0d8664b5/1.

[41] Gyunam Park and Leah Tacke genannt Unterberg. Procure-To-Payment (P2P) Object-
centric Event Log in OCEL 2.0 Standard, October 2023. URL https://zenodo.org/
records/8412920.

[42] Benedikt Knopp and Nina Graves. Container Logistics Object-centric Event Log, August
2023. URL https://zenodo.org/records/8428084.

94

http://arxiv.org/abs/2205.01428
http://arxiv.org/abs/2205.01428
https://doi.org/10.5281/zenodo.8428112
https://doi.org/10.1007/978-3-319-29628-9_3
https://doi.org/10.48550/arXiv.2401.14149
https://data.4tu.nl/datasets/6889ca3f-97cf-459a-b630-3b0b0d8664b5/1
https://data.4tu.nl/datasets/6889ca3f-97cf-459a-b630-3b0b0d8664b5/1
https://zenodo.org/records/8412920
https://zenodo.org/records/8412920
https://zenodo.org/records/8428084

Acknowledgments

First, I would like to thank Prof.Wil van der Aalst for providing the opportunity towritemy thesis
at PADS, allowing me to dive deeper into this research field. Moreover, I would additionally like
to thank him for also supervising this thesis project. Throughout writing this thesis, he provided
me with excellent feedback and ideas, but especially also a lot of freedom to explore different
directions.

I also want to thank Prof. Stefan Decker for accepting the position as second examiner for this
thesis.

Last but not least, I would like to thank the people around me for their continued support, mo-
tivation, and love, especially Alina, who spent hours proofreading this thesis, as well as Leya,
Angela, and Walter.

95

	Abstract
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Research Goals
	Contributions
	Thesis Structure

	Related Work
	Traditional Declarative Process Models
	DECLARE
	DCR Graphs
	Understandability of Declarative Models

	Process Querying
	Object-Centric Process Constraints
	OCBC
	OCCG
	OCCM

	Process Filtering
	Discussion

	Preliminaries
	Basics
	Universes
	Object-Centric Event Data (OCED)

	Process Queries and Constraints using Variable Bindings
	Bindings and Binding Predicates
	Nested Querying of Bindings using Binding Boxes
	Process Constraints using Variable Bindings
	Efficiently Evaluating Binding Queries for OCED
	Recursive Binding Query Algorithm
	Expanding Bindings

	Discovering Constraints from OCED
	Discovering Count Constraints
	Discovering Eventually-Follows Constraints
	Discovering Complex Constraints

	Extensions
	Further Increasing Predicate Expressiveness
	General Binding Annotations

	Implementation
	Overview and Architecture
	Execution Engine
	User Interface

	Evaluation
	Experimental Setup
	Datasets
	Hardware

	Qualitative Analysis
	Order Management
	BPI Challenge 2017 OCED

	Performance Analysis
	Query & Constraint Scenarios
	Scalability for Complex Constraints

	Threats to Validity

	Discussion
	Scalability Limitations
	Why not SQL?

	Conclusion
	Bibliography
	Acknowledgements

