
https://bise-student.io

BACHELOR’S THESIS

An Investigation on Online
Machine Learning for Anomaly
Detection in Time Series Data

Publication Date: 2024-09-16

Author
Sebastian Niklas WETTE
Darmstadt, Germany
sebastian.wette@stud.tu-darmstadt.de
0x181b0929177CD63BF1E54Df2aFf0B136d2954F10

Abstract

Concept drift in time series data poses a problem for many machine learning algo-
rithms. Underlying shifts in the statistical properties of data lead to a decline in the
performance of batch-trained models. Anomaly detection algorithms working with
forecasts on the future behavior of a system suffer from these effects. Thus, adap-
tion to concept drift is a fundamental challenge for anomaly detection systems like
this, especially in quickly evolving environments. Instead of retraining models from
scratch regularly, models can continuously learn and update themselves as new data
arrives, a strategy known as online learning. This thesis investigates the efficacy of on-
line machine learning in prediction-based anomaly detection for time series data under
concept drift, focusing on accuracy and computational efficiency compared to batch-
trained methods. The work presents a proof of concept for prediction-based anomaly
detection using online learning. Furthermore, the research compares the performance
of the presented approach...

Keywords: Online ML, Anomaly Detection, Time Series, Concept Drift
Methods: systematic literature review, benchmarking

Submission Date: 2024-09-09
Submission Contract: 0xC2DdBdD2b9A1A317f6976005ec62A61149F1B36c

License: CC BY-NC 4.0 - https://creativecommons.org/licenses/by-nc/4.0/legalcode

https://bise-student.io
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Hochschule Darmstadt

– Fachbereich Informatik –

An Investigation on Online Machine Learning
for Anomaly Detection in Time Series Data

Abschlussarbeit zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

vorgelegt von

Sebastian Wette

Matrikelnummer: 769178

Referent : Prof. Dr. Andreas Heinemann

Korreferent : Prof. Dr. Florian Heinrichs

Abgabedatum : 07. März 2024

Sebastian Wette: An Investigation on Online Machine Learning for Anomaly De-
tection in Time Series Data, © 07. März 2024

E R K L Ä R U N G

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch
nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich
gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst
erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Darmstadt, 07. März 2024

Sebastian Wette

A B S T R A C T

Concept drift in time series data poses a problem for many machine learn-
ing algorithms. Underlying shifts in the statistical properties of data lead to
a decline in the performance of batch-trained models. Anomaly detection
algorithms working with forecasts on the future behavior of a system suffer
from these effects. Thus, adaption to concept drift is a fundamental chal-
lenge for anomaly detection systems like this, especially in quickly evolving
environments. Instead of retraining models from scratch regularly, models
can continuously learn and update themselves as new data arrives, a strat-
egy known as online learning.

This thesis investigates the efficacy of online machine learning in prediction-
based anomaly detection for time series data under concept drift, focusing
on accuracy and computational efficiency compared to batch-trained meth-
ods. The work presents a proof of concept for prediction-based anomaly de-
tection using online learning. Furthermore, the research compares the perfor-
mance of the presented approach with the well-known batch-trained models
SARIMA and Prophet, using real-world data from Deutsche Telekom’s IP
Backbone, focussing on accuracy and efficiency.

Resulting measurements indicate that the online learning approach is more
accurate in detecting anomalies when concept drift exists in the data. It
exhibits superior adaptability to concept drift, whereas batch-trained mod-
els fail to produce adequate forecasts after a changepoint. However, batch-
trained models perform better in static data environments. Lower CPU and
memory usage and faster runtimes indicate the superior computational effi-
ciency of the online learning method.

Finally, this study confirms the superiority of online learning for prediction-
based anomaly detection under concept drift. It suggests potential applica-
tions in real-time systems and dynamic data environments. There are also
some limitations to this approach that motivate future work. Forthcoming
research should explore more diverse online learning algorithms for differ-
ent use cases and address the challenges of online MLOps, namely hyperpa-
rameter tuning. Additionally, distinguishing between anomalies and concept
drift remains a critical challenge, suggesting avenues for further exploration
in adaptive learning strategies.

Z U S A M M E N FA S S U N G

Concept Drift ist für viele maschinelle Lernverfahren ein Problem. Verände-
rungen in den statistischen Eigenschaften der Daten resultieren bei konven-
tionellen, auf Batches trainierten Modellen in Leistungseinbußen. Dies be-
trifft auch Algorithmen zur Anomalieerkennung, die auf Prognosen des zu-
künftigen Systemverhaltens basieren. Häufig wird versucht, das betroffene
Modell in regelmäßigen Abständen komplett neu zu trainieren, um das Pro-
blem zu lösen. Dies ist allerdings ein rechenintensiver und komplexer Pro-
zess. Online Machine Learning stellt eine fortschrittlichere Strategie dar. Dabei
besitzt das Modell die Fähigkeit, sich kontinuierlich weiterzuentwickeln und
selbstständig zu aktualisieren, sobald neue Daten verfügbar werden.

Diese Arbeit untersucht die Wirksamkeit von Online Learning für vorher-
sagebasierte Anomalieerkennung auf Zeitreihendaten, welche Concept Drift
beinhalten. Der Schwerpunkt dieser Untersuchung liegt auf der Genauigkeit,
Laufzeit und dem Ressourcenverbrauch im Vergleich zu den konventionel-
len Modellen SARIMA und Prophet. Hierfür wurde ein Prototyp für Online
Learning basierte Anomalieerkennung vorgestellt und mit der Leistung von
gängigen Modellen verglichen. Die Experimente für diesen Vergleich basie-
ren auf echten Daten aus dem IP-Backbone der Deutschen Telekom.

Die Messergebnisse verdeutlichen, dass der Online Learning-Ansatz in der
Anomalieerkennung eine höhere Genauigkeit aufweist, insbesondere wenn
Concept Drift in den Daten auftritt. Dieser Ansatz zeichnet sich durch eine
überlegene Anpassungsfähigkeit aus, wohingegen Batch-trainierte Modelle
nach signifikanten Veränderungen in den Daten nicht mehr in der Lage sind,
passende Vorhersagen zu treffen. In statischen Datenumgebungen hingegen
erweisen sich Batch-trainierte Modelle als leistungsfähiger. Die reduzierte
CPU- und Speicherauslastung sowie kürzere Ausführungszeiten des Online-
Verfahrens unterstreichen dessen erhöhte Effizienz.

Diese Thesis unterstreicht die Überlegenheit des Online-Learnings in der
vorhersagebasierten Anomalieerkennung unter Concept Drift, mit vielver-
sprechenden Einsatzmöglichkeiten in Echtzeitsystemen und sich wandeln-
den Umgebungen. Allerdings birgt dieser Ansatz Einschränkungen, welche
Raum für weitere Forschung lassen. Zukünftige Arbeiten sollten den Fokus
auf die Erkundung verschiedener Online-Lernalgorithmen und die Bewäl-
tigung von Herausforderungen im Bereich Online-MLOps, insbesondere in
der Feinabstimmung von Hyperparametern legen. Die Differenzierung zwi-
schen Anomalien und Concept Drift bleibt eine zentrale Herausforderung
und regt zu weiteren Untersuchungen adaptiver Lernstrategien an.

C O N T E N T S

Thesis
1 Introduction 2

1.1 Problem Definition and Motivation 2

1.2 Objective and Methodology . 3

1.3 Structure of the Thesis . 4

2 Literature Review 6

3 Technical Background 11

3.1 Anomaly Detection . 11

3.1.1 Definition . 11

3.1.2 Types of Anomalies in Time Series Data 12

3.1.3 Methods for Detecting Anomalies 13

3.2 Time Series Forecasting . 15

3.2.1 Definition . 15

3.2.2 Components of Time Series 15

3.2.3 ARIMA Models . 15

3.3 Concept Drift . 17

3.3.1 Definition . 17

3.3.2 Types of Concept Drift . 17

3.3.3 Solution Approaches . 18

3.4 Online Machine Learning . 19

3.4.1 Definition . 19

3.4.2 Optimization for Online Learners 19

4 Concept and Implementation 24

4.1 Conceptual Framework . 24

4.2 Design and Implementation . 25

4.3 Challenges . 27

5 Empirical Findings 30

5.1 Exploratory Data Analysis . 30

5.2 Experimental Setting . 32

5.2.1 Methodology . 32

5.2.2 Software and Models . 34

5.3 Results . 35

6 Discussion 38

6.1 Key Findings . 38

6.2 Limitations . 41

6.3 Implications . 44

7 Summary and Future Work 45

Appendix

Bibliography 48

L I S T O F F I G U R E S

Figure 3.1 Point Anomaly in Random Noise 12

Figure 3.2 Contextual Anomaly in Sine Wave 12

Figure 3.3 Subsequent Anomaly in Sine Wave 12

Figure 3.4 Forecasting on Time Series with Abrupt Concept Drift 18

Figure 3.5 Linear Model Fitted to Data 20

Figure 3.6 Non-Linear Model Fitted to Data 21

Figure 3.7 Gradient Descent Steps Visualized 22

Figure 4.1 Predictions of Online ARIMA Model 26

Figure 4.2 Error of Online ARIMA Model 26

Figure 4.3 Error Distribution of Online ARIMA Model 27

Figure 4.4 Forecasting on Time Series with Concept Drift 28

Figure 4.5 Errors of Forecasting under Concept Drift 29

Figure 5.1 Traffic Data of Router in IP Backbone 30

Figure 5.2 Concept Drift Detection using ADWIN 31

Figure 5.3 Distribution of Traffic Data before Drift 31

Figure 5.4 Distribution of Traffic Data after Drift 31

Figure 5.5 Autocorrelation Function of Traffic Data 32

Figure 5.6 Traffic Data with Synthesized Anomalies 32

Figure 5.7 Result of CPU-Usage Benchmark 36

Figure 5.8 Result of RAM-Usage Benchmark 37

Figure 6.1 PAD Forecast on Traffic Data 38

Figure 6.2 SARIMA Forecast on Traffic Data 39

Figure 6.3 Error of PAD Forecast on Traffic Data 39

Figure 6.4 Error of SARIMA Forecast on Traffic Data 40

Figure 6.5 KDE Plot of PAD’s Forecast Error 42

Figure 6.6 KDE Plot of SARIMA’s Forecast Error 42

L I S T O F TA B L E S

Table 5.1 Result of Forecasting Performance Benchmark 35

Table 5.2 Result of Detection Accuracy Benchmark 36

Table 5.3 Result of Timing Benchmark 37

Table 6.1 F1 Scores before and after Drift 40

L I S T O F A B B R E V I AT I O N S

ADWIN Adaptive Windowing

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average

DL Deep Learning

DT Deutsche Telekom

FN False Negatives

FP False Positives

HTM Hierarchical Temporal Memory

IoT Internet of Things

IP Internet Protocol

IT Information Technology

KDE Kernel Density Estimation

LSTMs Long Short Term Memory Networks

MA Moving Average

MAE Mean Absolute Error

ML Machine Learning

MLOps ML Operations

MSE Mean Squared Error

NAB Numenta Anomaly Benchmark

PAD PredictiveAnomalyDetection

PoC Proof of Concept

RNN Recurrent Neural Network

SARIMA Seasonal Autoregressive Integrated Moving Average

TP True Positives

T H E S I S

1
I N T R O D U C T I O N

Modern Information Technology (IT) ecosystems rely on anomaly detection
techniques for monitoring and fault identification to help gain insights into
the system’s state [2]. Due to ever-growing digitalization and the continu-
ous development of new technologies, today’s environments produce large
amounts of data at very high speeds. A typical example of this phenomenon
can be observed with the Internet of Things (IoT) [13]. There are various ap-
proaches to anomaly detection [1], but Machine Learning (ML)-based meth-
ods stand out as the most used in real-world use-cases (see [26] for example).
Their ability to efficiently process and learn from large datasets leads to this
widespread adoption. However, the general use of classical ML algorithms
trained on large batches of data needs to be revised to work for today’s
dynamically changing systems. The primary concern is the phenomenon of
concept drift, which occurs when the statistical properties of the predicted
target variable change over time [29]. As a result, models trained on histor-
ical data batches may become outdated, leading to decreased accuracy and
effectiveness in detecting outliers because of their inability to adapt to the
changes in the data [12, p. 244]. There can be various reasons for such a con-
cept drift, one of which can be a change in the configuration of an IT system,
leading to different behavior.

1.1 problem definition and motivation

These difficulties also occur at Deutsche Telekom (DT), Germany’s largest In-
ternet service provider, which maintains a vast Internet Protocol (IP) network
of various segments. One of the most essential segments is the IP Backbone,
the central and high-speed core infrastructure responsible for efficiently rout-
ing and forwarding data traffic between various network segments. It serves
as the main highway for data transmission within the network. The Back-
bone of an IP network is a complex system comprised of numerous individ-
ual machines, such as routers and switches. Network administrators and de-
velopers must carefully configure each machine to work harmoniously with
the others, forming a cohesive unit that efficiently routes data traffic. They
perform many configurational changes manually, but the company wants to
employ automation systems increasingly in the future. Due to current au-
tomation projects within DT, network configurations are becoming increas-
ingly automated, and behavior inside the IP Backbone changes regularly. As
a result, the underlying telemetry data, in the form of time series, can also
experience frequent shifts in behavior. Consequently, traditional ML models’
performance can deteriorate when forecasting [29, p. 1]. Prediction-based
anomaly detection techniques suffer from this problem since they utilize a

1.2 objective and methodology 3

model of normal behavior to make predictions about future behavior. These
forecasts undergo comparison with the actual data, and if a significant de-
viation occurs, the algorithm declares the data point anomalous. [1, p. 276].
Strategies like this do not perform well if the underlying predictive model is
flawed due to concept drift.

Different approaches to handling concept drift have been proposed in the
past [16, 29]. Some of these solutions include detecting change points in
affected data and consequent model retraining. While approaches like this
can lead to satisfactory results, they are complex to implement and cost ad-
ditional time and computing resources. The challenges presented by concept
drift, particularly within the dynamic and evolving context of DT’s IP Back-
bone, exhibit the limitations of using traditional batch-trained ML models for
anomaly detection. There is a need for a robust and dynamic anomaly de-
tection solution that is cheap and performant. Furthermore, for many mon-
itoring and anomaly detection applications, it is preferable to process data
online, one by one, to provide an instance-based service that is accessible in
real-time.

In this context, online ML emerges as a potential solution. Unlike their batch-
learning counterparts, online learning algorithms are designed to incremen-
tally update and refine their models in response to the influence of new
concepts in the data [39]. This continuous learning paradigm enables these
algorithms to adapt to changing distributions in data, thereby ensuring the
model’s sustained precision. A model can continue to learn from new exam-
ples as they come by and does not require retraining. Since there is currently
little effort in using online ML for anomaly detection inside DT, this thesis
aims to leverage the features of online learning for predictive anomaly de-
tection on time series data under concept drift to counter common problems
of batch-trained ML models. A key area of investigation in this thesis is how
online learning approaches perform against similar state-of-the-art methods
in the face of concept drift. Furthermore, this research explores the theoreti-
cal potential and the real-world challenges and limitations of online learning
in this context.

1.2 objective and methodology

This thesis proposes a solution for the previously described problem. On
the one hand, there is the problem of concept drift adaptation for ML-based
anomaly detection, and on the other hand, there is the need for fast and
cheap real-time operation of these systems. Therefore, this work develops a
concept that represents a promising solution for both objectives. Specifically,
the proposal combines the existing ideas of prediction-based anomaly de-
tection with online machine learning to create a more dynamic and robust
solution.

1.3 structure of the thesis 4

Given the challenge of adapting ML models to concept drift in anomaly de-
tection for time series data, this thesis aims to explore the following research
questions:

RQ1: How accurate is the proposed online learning approach to prediction-
based anomaly detection compared to state-of-the-art techniques on
time series data under concept drift?

RQ2: How does the proposed approach perform compared to state-of-the-
art techniques regarding computational efficiency and resource utiliza-
tion?

RQ3: What are the specific challenges and limitations when using online
ML for prediction-based anomaly detection on time series data under
concept drift?

Answering these questions enables the reader to decide under which circum-
stances online learning-based approaches are preferred over batch ones.

To address these questions, this thesis presents the following contributions.
The advantages and disadvantages of the proposed approach are worked out
by conducting a literature review. This approach is implemented and evalu-
ated in a Proof of Concept (PoC) based on the online learning library River
[20] for Python, which is the language commonly employed for ML. The
prototype for the use-case of DT, introduced in Chapter 4, utilizes an online
learning variant of an Autoregressive Integrated Moving Average (ARIMA)
[5] model to produce accurate forecasts for the rest of the anomaly detection
algorithm. Additionally, the contributed module to the River project can ac-
commodate any forecasting model.

A benchmark on actual company data from the IP Backbone monitoring
is used to compare the proposed solution to similar prediction-based ap-
proaches employed in the company (e.g., Meta’s Prophet [41]). The bench-
mark primarily evaluates the accuracy and overall performance of the mod-
els, providing a clear comparison of their effectiveness in real-world appli-
cations. Besides, additional benchmarks compare both time and resource
consumption.

1.3 structure of the thesis

First, there will be an introduction to fundamental literature in Chapter 2,
which investigates the current approaches to anomaly detection and time
series forecasting. Similarly, literature on concept drift and online learning
is discussed.

Chapter 3 lays the groundwork for developing the proposed prediction-
based anomaly detection solution. This chapter explores the principles of

1.3 structure of the thesis 5

anomaly detection, offering an overview of its fundamental concepts and ap-
proaches. It further explores time series forecasting, highlighting the ARIMA
model and clarifying its relevance and application in the predictive analysis
of time series data. Besides, the chapter addresses the challenge of concept
drift in dynamic environments and introduces online learning as a possible
solution to this problem.

Subsequently, in Chapter 4, the thesis transitions from theoretical founda-
tions to their practical realization. It is devoted to developing a PoC and
outlining the design of the proposed online learning anomaly detector.

Finally, the benchmarks, the data used for the benchmarks, and the empiri-
cal results presented in Chapter 5 are discussed in Chapter 6.

In Chapter 7, the thesis summarizes the findings and resumes the discussion
of the results from the previous chapter. This summary clarifies whether the
proposed concept can offer added value to the supervising company and
other researchers. It also examines prospective steps, possible improvements
to the approach, and future research topics.

2
L I T E R AT U R E R E V I E W

This section of the paper introduces the literature to investigate the problems
with anomaly detection on time series under concept drift to help design a
possible solution. The featured texts primarily focus on different anomaly
detection techniques, time series forecasting, concept drift, and the basics of
online ML.

Researchers have published many studies and proposed various approaches
regarding anomaly detection. Two seminal works guide this exploration.
Chandola et al. offer a comprehensive overview of the topic in their survey
on anomaly detection [11], defining the different types of anomalies and scor-
ing techniques for detection algorithms. They explain what it means to detect
outliers in data and describe the challenges of this task. They also explore
different application domains of anomaly detection. Aggarwal [1] provides
an in-depth analysis of different outlier detection methodologies, setting a
theoretical baseline for identifying anomalies. In his work, he explains that
any ML model used for anomaly detection makes assumptions about the
expected behavior of data and uses these expectations to evaluate if a newly
seen data point is anomalous. He dedicates a chapter to detecting anomalies
in time series data using regression-based forecasting models, an essential
task for this thesis. More recently, the rise of Deep Learning (DL) has also in-
troduced a paradigm shift in anomaly detection. Pang et al. [34] addressed
major problems with anomaly detection that have not been solved yet, such
as performance problems with high dimensional data or high false positive
rates, and explained how DL approaches might help to solve those problems.
Some DL-based methods try to learn a low-dimensional feature representa-
tion, like an Autoencoder, and score anomalies by looking at the reconstruc-
tion error of new data points. This approach is similar to prediction-based
anomaly detection.

A critical use case for anomaly detection exists in the context of time series
data. A core concept for this purpose is time series forecasting. Chris Chat-
field describes the fundamentals of time series forecasting [12]. He goes even
more profound and writes about topics like multiple regression models and
concept drift, or how he calls it "structural breaks" [12, p. 244]. Other essen-
tial publications include the work of De Gooijer et al. [14] and Ahmed et al.
[4]. One of the most frequently used methods for predicting time series data
is ARIMA modeling, or Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) for time series containing seasonality. Box and Jenkins, among
others, described this model type in their standard work [9]. Chapter 3 of this
thesis details the use of ARIMA and SARIMA for making precise predictions

literature review 7

on time series. Multiple studies evaluate ARIMA models’ forecasting perfor-
mance and interpretability against that of deep neural networks. Zhang and
Qi found that neural networks tend to be more accurate in their forecasts but
also need more complex preprocessing [46]. There are also attempts to com-
bine ARIMA models and neural networks and create a hybrid that profits
from the strengths of both models [45]. In some of its current time series-
related use cases, DT employs another model called Prophet, which Meta
develops and maintains. Taylor and Letham wrote a paper on the motiva-
tion behind the model and its technical implementation [41].

As previously stated, time series play an important part in anomaly detec-
tion. Blázquez-García et al. conducted a review of different approaches to
anomaly detection on time series specifically [8]. Besides dealing with the
different types of anomalies to detect in time series, the authors also compare
prediction-based models with estimation-based models for their specific use
case. They mention incremental learning techniques for prediction-based de-
tection and point out that there is little research on this technique, even
though it has potential benefits. The study by Schmidl et al. [37] presents
similar findings. They present a wide range of algorithms, which they com-
pare in real-world and synthesized benchmarks, including datasets from the
Numenta Anomaly Benchmark (NAB). These experiments show that there is
no single superior algorithm for anomaly detection but that the choice of
algorithm depends on the specific use case. Another key takeaway is that all
tested methods had problems regarding their flexibility and robustness.

Several studies on more specific use cases are similar to the one addressed
in this introduction. Some of these studies refer, for example, to anomaly de-
tection in network traffic data [3, 32]. There is also a survey by Cook et al. on
detecting outliers in monitoring data from IoT systems [13]. Use cases like
this allow treating the underlying data as a time series. Cook et al. emphasize
the problems with nonstationarity in real-world data and the technical limi-
tations of low-powered computing resources. In such a complex application
as the IoT, processing data online rather than in batch to ensure real-time
recognition is preferable, so the authors propose using incremental learning
algorithms as a cheap and reliable answer.

Next, it is interesting to take a closer look at actual implementations for
anomaly detection using a prediction-based approach. Malhotra et al. pub-
lished a paper on their approach to using Long Short Term Memory Net-
works (LSTMs) for anomaly detection [31]. Such a network is a special type of
Recurrent Neural Network (RNN) good at learning long-term dependencies
in sequential data, e.g., time series. They use an LSTM to learn the normal
behavior of a series and make predictions, to use the prediction error as a
metric to identify abnormal behavior. Similarly, Laptev et al. at Yahoo pro-
posed a framework for prediction-based anomaly detection called Extensible
Generic Anomaly Detection System [26]. This framework consists of three sep-

literature review 8

arate modules. The first module performs forecasting using a model type
that best fits the given data in a plug-and-play manner. The second mod-
ule scores anomalies based on the prediction error of the previous model
and an automatically selected threshold. Finally, the last module deals with
notifications for found anomalies. Munir et al. propose a similar solution
called DeepAnT [33]. This implementation, also designed for unsupervised
anomaly detection on time series, employs DL for making forecasts on future
values of a time series. It uses a Convolutional Neural Network to produce
a single prediction at a time, so it performs well on data streams. Another
system that relies on DL for its prediction-based anomaly detection comes
from computer vision. Liu et al. use Generative Adversarial Networks to
synthetically generate the expected next image of a video and compare it
to the actual subsequent frame captured by the camera [28]. As in previous
cases, calculating an anomaly score uses the divergence of this comparison.

All implementations above use a conventional ML model trained on a batch
of data. Hence, they are susceptible to concept drift, which deserves partic-
ular attention in any scenario dealing with a continuous data stream. Some
researchers call this problem "AI aging" [43]. The review by Jie Lu et al. [29]
examines the problem in detail, illustrates it by example, and suggests a way
of detecting it. Similarly, the survey on concept drift adaptation by Gama et
al. [16] deals with the different types of concept drift and suggests multiple
ways to adapt. Besides simple approaches to concept drift adaption, such as
regular retraining of a batch-trained model, Adaptive Windowing (ADWIN)
is a concrete example of a method for dealing with concept drift suggested
by Bifet and Gavalda [7]. It keeps a sliding window of variable size, and
whenever two large enough subwindows have averages that deviate a cer-
tain amount, the algorithm flags a change in the data distribution.

Online learning is another possible solution to the problem of concept drift.
Shalev-Shwartz et al. authored a paper examining online regression to fore-
cast time series data [39]. Two other essential papers on the topic are the
article on ML for streaming data by Gomes et al. [18], and the survey on
online learning by Hoi et al. [22], which both discuss the necessity of online
ML and concrete forms of its implementation. Online variants of ARIMA
models are of particular interest for the intent of this thesis. The structure
of the model stays the same as in a batch-learning scenario, but the way
the model’s parameters are updated changes gradually. A unique form of
Gradient Descent, called Online Gradient Descent, is used for optimization,
as described in [6]. Similar learning algorithms are used by Guo et al. [19].
Although they use LSTMs for time series prediction, the optimization steps
are alike. Guo et al. go even further and propose a solution called "adap-
tive gradient learning," which makes the learning process robust to outliers
but still able to adapt to new normal patterns in the data. Anomaly detec-
tion also requires a similarly robust optimization strategy like this. In online
learning, the challenge of catastrophic forgetting, where models lose earlier

literature review 9

knowledge when learning new information, is significant. Kirkpatrick et al.
address this in their work [24], proposing solutions inspired by mechanisms
of the biological brain.

Previously mentioned studies on anomaly detection mainly refer to ML mod-
els trained on batches of data. The following section reviews research papers
focusing on online learning algorithms in detail. More straightforward ap-
proaches to data containing concept drift include, for example, windowing
procedures. These algorithms divide the data stream into regular sections
of equal size, allowing each to be processed using standard anomaly detec-
tion methods. Salehi and Rashidi explain the application of this technique
to different detection methods [35]. Some real-time anomaly detection algo-
rithms also utilize decision trees. Tan et al. argue that there is currently little
work on anomaly detection for evolving data streams and propose a method
called Half Space Trees [40], which the River Library also implements. This ap-
proach is particularly performant and resource-efficient.

While these studies are primarily theoretical, some researchers use online
ML technologies in real projects. Laxhammar and Falkman employed an
online learning variant of a clustering approach for detecting anomalous tra-
jectories [27]. They found that the online paradigm enabled them to detect
anomalies even as the data evolved with time. Another option they evaluate
is a regular schedule of retrainings on new batches of data. A study closely
related to this thesis was written by Ahmad et al. [2]. The authors identify
an increased availability of streaming data and a consecutive need for de-
tection algorithms that can deal with the characteristics of such data. They
suggest using Hierarchical Temporal Memory (HTM) to continuously learn
the behavior of streaming time series data. The online nature of the HTM
automatically handles changes in the underlying statistics of the data. The
system models the prediction errors as a Gaussian distribution, allowing for
comparing any new error against this distribution. This instance is flagged
as anomalous if the error falls outside a certain threshold (on the tails of the
Gaussian distribution). A procedure can only perform well if the forecast
model fits the data well. The study found that algorithms learning online
perform particularly well in the NAB. Moreover, Saurav et al. use RNNs for
this type of prediction-based detection [36] while the core concept of their
approach is similar to that of Ahmad et al. However, Saurav et al. focus on
a specific problem of online learners dealing with anomalies in data, com-
parable to Guo et al. [19]. If there is a single disruption in the data, the
model will also learn this anomalous data instance and update its weights
accordingly. This behavior is desirable when the model needs to adapt to
the new normal behavior of the series. However, in the case of single out-
liers, it reduces the model’s overall performance because the algorithm tries
to learn the anomaly as a new pattern behavior, possibly resulting in a dire
prediction for the next data point. An appropriate learning rate can limit this
problem since there is more normal data than anomalies, but it can not elim-

literature review 10

inate it. Not learning the anomalous data instances does not work because
then the adaptation to drift fails. The researchers propose using a sliding
window of the latest error values to dynamically calculate the learning rate
for the model weights and benchmark their approach using the NAB.

The existing literature already contains the individual components of the
solution proposed in this thesis. While the paragraphs above mention exist-
ing implementations of prediction-based anomaly detection and those using
online learning, there has yet to be an attempt to combine this anomaly de-
tection method with an online ML variant of ARIMA models to provide
accurate detection for time series data under concept drift.

3
T E C H N I C A L B A C K G R O U N D

This thesis requires a basic understanding of techniques for anomaly detec-
tion, time series forecasting, and online ML. Additionally, concept drift is
analyzed, as it poses a substantial problem for anomaly detection in time
series. This chapter is structured as follows: Section 3.1 introduces the basics
of anomaly detection and focuses on anomaly detection for time series data.
To better understand this specific application area, the basics of time series
forecasting are outlined in 3.2. Forecasting time series using ARIMA models
is essential here. Section 3.3 briefly introduces the problem of concept drift
in the context of time series. Finally, Section 3.4 investigates online ML as a
potential solution for the problem of concept drift. There is a thorough ex-
ploration of the differences in optimization algorithms between traditional
learners and online learners to see how the actual process of learning works.

3.1 anomaly detection

3.1.1 Definition

One of the most widely accepted definitions of what an anomaly is comes
from Hawkins, who describes them as "[...] an observation which deviates
so much from the other observations as to arouse suspicions that it was gen-
erated by a different mechanism" [21]. The term mechanism refers to the un-
derlying system responsible for generating the data, suggesting that anoma-
lies represent a fundamental shift or irregularity in the system’s behavior.
In other words, anomalies are patterns in data that do not conform to the
normal behavior of that data but instead differ from it [11, 37]. They are
also called outliers, discordants, or deviants [1, p. 1]. Anomaly detection is
the task of finding such anomalous instances, which generally occur less
frequently than normal ones, inside of data. It is essential across many in-
dustries, and research in this field has been ongoing for many decades. Ap-
plication of anomaly detection ranges from intrusion detection in networks,
over fraud detection, to usage in healthcare and many more [11, 34]. A spe-
cific application area for anomaly detection is the analysis of time series that
occur in many places in the industry, e.g., as telemetry data of a monitoring
system [2]. Section 3.2 goes into more detail on time series and forecasting,
as this thesis is related explicitly to anomaly detection on univariate time
series.

3.1 anomaly detection 12

3.1.2 Types of Anomalies in Time Series Data

There are three main types of anomalies in sequential data [11]: point anoma-
lies, contextual anomalies, and collective anomalies, sometimes also called
subsequent anomalies [8].

Figure 3.1: Point Anomaly in Random Noise

Figure 3.2: Contextual Anomaly in Sine Wave

Figure 3.3: Subsequent Anomaly in Sine Wave

3.1 anomaly detection 13

Point anomalies are individual data points that significantly deviate from
most data in a time series, potentially indicating unusual or noteworthy
events [8]. For example, in the series shown in Fig. 3.1, such an anomaly
is recognizable as an upward outlier, further away from the rest of the data.
Contextual anomalies "[...] are observations or sequences which deviate from
the expected patterns within the time series, however, if taken in isolation
they may be within the range of values expected for that signal" [13]. Fig. 3.2
shows an example of this type of outlier in a sine wave. While this instance
could be part of the normal data, it behaves anomalously in the context of
time. At last, collective anomalies, or subsequent anomalies, are groups of
consecutive anomalous data instances. Single points of these groups may not
be anomalous on their own, but seen as a subsequence, they are [13], see Fig.
3.3.

While the detection of point outliers is the most common task in anomaly
detection, and most models specialize in this type of outlier, there are also
ways to detect the other types of anomalies. However, they are often more
complex [8].

3.1.3 Methods for Detecting Anomalies

Anomaly detection algorithms can be broadly categorized into three distinct
settings: supervised, unsupervised, and semisupervised. Supervised algo-
rithms work with labeled data. The dataset holds a binary label for each ex-
ample to determine whether it is an anomaly. Traditional supervised meth-
ods for anomaly detection are classifiers that learn to distinguish regular
instances from anomalous ones based on some given features. Obtaining la-
beled data is often infeasible since the labeling process has to be done manu-
ally in many cases, making it expensive and time-consuming [11]. Therefore,
unsupervised anomaly detection techniques are more common. Unsuper-
vised algorithms do not use labels for training. Instead, they rely on various
assumptions regarding, for example, the data’s structure, behavior, or distri-
bution [37]. Semisupervised methods work with partially labeled data, but
they are beyond the scope of this thesis. Another characteristic that distin-
guishes anomaly detection algorithms is their output, either binary labels or
anomaly scores [1, p. 2]. While binary labels enable direct evaluation of the
model’s accuracy if the actual labels are known, using outlier scores is more
common. The transition from scalar scores to binary labels can be done us-
ing thresholds, but that is a separate problem [37].

There are different concrete approaches to unsupervised anomaly detection.
More straightforward methods use statistical metrics to detect anomalies,
and more complex systems rely on ML or DL. Most anomaly detection algo-
rithms work based on an assumption about the normal behavior of the data,
and the difficulty behind detection lies in defining such a normal behavior
[11]. Aggarwal wrote that "[...] all outlier detection algorithms create a model

3.1 anomaly detection 14

of the normal patterns in the data, and then compute an outlier score of a
given data point on the basis of the deviations from these patterns" [1, p. 5].

The most basic forms of outlier detection on sequential data assume that
statistical properties like mean and variance are constant over time. This
premise makes it easy to manually set high and low thresholds and declare
data instances outside these thresholds anomalous [13]. Suppose the data is
assumed to be normally distributed. In that case, it is viable to look at the
distribution’s tails and flag everything beyond three standard deviations (σ)
away from the mean as anomalous, also known as the "3σ rule" [11, p. 30].
Aggarwal describes using the Z-value, the number of standard deviations a
data point is distant from the mean, as an anomaly score and uses the thresh-
old of three to declare a point anomalous [1, p. 6]. This approach only works
for point anomalies [1, p. 11], and if the approximation to the normal dis-
tribution is poor, the method generates insufficient results. Distance-based
techniques assume that normal data is close to each other and anomalous
instances are further away. Therefore, they use Nearest Neighbor algorithms
to determine anomaly scores [11]. Clustering-based algorithms work simi-
larly, but they group data into clusters and determine if newly seen data
is closer to a normal or anomalous cluster [27]. Other approaches include
reconstruction-based ones [37] using Autoencoder Networks [34] or tree-
based algorithms like Half Space Trees [40].

The definition of outliers as values that deviate from expected behavior leads
to the idea of prediction-based anomaly detection [8]. A well-chosen ML
model can learn the normal behavior of a system [1, p. 65]. This model
can then predict future behavior, which it considers normal. Comparing the
prediction to the actual data point, known as the ground truth, the model
can then calculate the anomaly score based on the difference between these
two, called the error. Instances that deviate significantly are considered out-
liers [8]. This approach allows for the detection of all anomaly types. Simple
examples in the literature include training linear regression models for pre-
dicting scalar values and using the errors of those predictions as an anomaly
score [1, 13]. The precision of the underlying model directly correlates with
the accuracy of such a detection algorithm [26]. Since different models make
distinct assumptions about the data, choosing a suitable model is particu-
larly important. If a model cannot represent the normal behavior, this leads
to insufficient performance [1, p. 5].

3.2 time series forecasting 15

3.2 time series forecasting

3.2.1 Definition

Time series are sequences of data points recorded or measured at successive
points in time, typically at regular intervals [12, p. 10]. The single observa-
tions that comprise a series are generally discrete values [9, p. 2]. There are
two types of time series data: univariate and multivariate. In a univariate
time series, there is a single observation for each point in time. On the other
hand, in a multivariate time series, there are multiple observations of multi-
ple variables at each timestamp [13].

Although these individual observations of a series might appear incoherent
to the bare eye, machine learning algorithms can deduct information from
them to predict future values [45]. A model is fitted to the data set and is
then used to predict data points past the time range of the given training
data. Predicting future values of a time series based on historical data and
using statistical models to identify patterns and trends that inform these
predictions is called forecasting [9, p. 2]. It is one of the most essential tasks
in time series analysis. Most often, the utilized algorithm uses a combination
of past values from the time series, and possibly other explanatory variables,
to predict the series’s upcoming h values, where h is called the lead time
or forecasting horizon [12, p. 12]. Hence, Chatfield stated that "[...] forecasts
generally depend on the future being like the past" [12, p. 16].

3.2.2 Components of Time Series

Time series data comprises several components. One of these components
is a trend, which indicates overall movement, meaning an increase or a de-
crease over a prolonged interval. Another component is seasonality, reflect-
ing regular, predictable patterns or cycles. Similar to seasonality are cyclic
changes, which are fluctuations without a fixed period. In many forecasting
scenarios, algorithms often disregard them. At last, there is irregular or ran-
dom noise, representing unpredictable, sporadic deviations in the data [12,
p. 22], [46]. Understanding these structural components of a time series is
necessary to use statistical models for forecasting based on past values.

3.2.3 ARIMA Models

One of the most frequently used models for time series forecasting is the
ARIMA model or variations of it [45]. Noted for its flexibility and decent
performance, ARIMA is extensively used in diverse real-world scenarios,
predicting future values as linear functions of past observations [46].

Initially, ARMA models, consisting of an Autoregressive (AR) and a Moving
Average (MA) component, were proposed to forecast stationary time series

3.2 time series forecasting 16

[9, p. 52]. A series is stationary if the mean, variance, and autocorrelation, the
measure of the correlation of a time series with its past values, do not differ
with time [13]. The AR part of the model captures the relationship between
an observation and a specified number of lagged observations. Essentially,
it assumes that the current value of the series is a function of its previous
values:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + εt. (3.1)

Xt being the value of the time series at time t, the symbols ϕ1, ϕ2, ..., ϕp, being
the weight parameters that are optimized in the learning process, and εt

being the error term at time t. The variable p is called the order of the AR
process [9, p. 52]. The MA part, on the other hand, allows the modeling of
the error term, or residual, as a linear combination of error terms occurring
at various times in the past:

Xt = εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q. (3.2)

The symbols θ1, θ2, ..., θq, are the respective learnable parameters and the vari-
able q is called the order of the MA process [9, p. 53]. The combined model is
defined as ARMA(p, q), where p and q denote the order of both components.
In the real world, time series are not always stationary though [13]. For this
purpose, an ARMA model extends an additional "Integrated" component to
become an ARIMA model. The new component involves differencing the
time series data to make it stationary [9, p. 92]. A complete ARIMA model is
now defined as ARIMA(p, d, q) with d describing the order of differencing
[9, p. 94]. At its core, it is a simple linear regression model that includes the
AR and MA components to predict future points in the series. The model
learns the respective coefficients, which are weights, using an optimization
algorithm [45]. Furthermore, seasonal ARIMA models, called SARIMA, ex-
tend ARIMA by supporting seasonal components [9, p. 305]. Box and Jenk-
ins developed a practical ARIMA model-building approach focusing on the
autocorrelation structures within time series because finding the proper or-
der of the different components is challenging. Their methodology unfolds
in a three-step process for optimal parameter selection [9, pp. 177–178], [45].
The process begins with model identification, leveraging autocorrelation and
partial autocorrelation to determine the order of the ARIMA model. Partial
autocorrelation refers to the correlation between a variable and its lag, ex-
cluding the influence of correlations at shorter lags [9, p. 64]. The next step
is parameter estimation, which involves ensuring stationarity through differ-
encing and choosing parameters ϕ and θ that minimize error measures. The
final stage is diagnostic checking, verifying the model’s accuracy and relia-
bility, leading to repeating steps one and two if the result is unsatisfactory.

3.3 concept drift 17

3.3 concept drift

3.3.1 Definition

Concept drift refers to a phenomenon where the statistical properties of a
target variable, which an ML model aims to predict, undergo unexpected
changes over time. More precisely, this means there is a change of joint prob-
ability of input X and output y at time t, denoted by Pt(X, y) [29]. Distribu-
tions can evolve, especially in dynamic data-producing environments that
change over time for various reasons, such as hidden changes to the un-
derlying configuration [16]. Time series data treated as a stream tends to
exhibit this changing behavior [19]. Concept drift, sometimes also referred
to as structural breaks [12, p. 244], is one of the most important problems
in modern ML [7]. The knowledge the model learned from previous data
no longer applies to new data, resulting in suboptimal predictions [29, 43].
Addressing concept drift requires strategic approaches, including detecting
change occurrences, data retention or exclusion decisions, and revising cur-
rent models to adapt to new data patterns [7].

3.3.2 Types of Concept Drift

The joint probability Pt(X, y) is the product of the probability of X, denoted
as Pt(X), and the probability of the output y given the input X, represented
as Pt(y|X). Hence, there is a distinction between two different kinds of con-
cept drift: real and virtual. "The real concept drift refers to changes in the
conditional distribution of the output (i.e., the target variable) given the in-
put (input features) while the distribution of the input may stay unchanged"
[16]. Virtual drift, or data drift, on the other hand, refers to a change of Pt(X)

only, which does not affect a model’s predictions [29]. Real concept drift can
occur in different ways. Sudden drift occurs abruptly, creating a more ap-
parent boundary between the data distributions before and after the change
point. In contrast, incremental drift unfolds over a more extended period. It
involves a slow transition from one data distribution to another. Gradual drift
slowly replaces old concepts step by step. Another common occurrence in
scenarios with seasonal patterns is reoccurring concept drift, characterized by
the cyclical appearance and disappearance of specific data trends [16, 29].

To illustrate the idea of concept drift and its effect on batch-trained ML mod-
els, Fig. 3.4 shows a synthetic time series that contains a sudden structural
break. Before the change point, marked in yellow, the data approximates a
sine wave with some random noise. After the change point, it is just ran-
dom noise with a mean and variance different than before. When fitting a
SARIMA model to a part of the data before the change and looking at its
forecasts on the whole series, it is visible how the model keeps predicting
the pattern it learned before the drift, resulting in higher errors afterward.
Therefore, its performance suffers.

3.3 concept drift 18

Figure 3.4: Forecasting on Time Series with Abrupt Concept Drift

3.3.3 Solution Approaches

Since the effects on performance are not tolerable for most use cases, data
scientists developed ways to adapt to this behavior. A straightforward way
to do this is to retrain the model on new data regularly [43]. However, this
approach raises the question of when to retrain a model. While doing so on
a fixed schedule can work for some use cases, another approach is to retrain
a model dynamically whenever concept drift is detected. Techniques for this
task include error rate-based detection and distribution-based detection [16,
29]. A widespread implementation that monitors distributions between two
dynamically sized windows, or sub-series, is ADWIN [7]. It also allows for
the preservation of more recent data for model retraining.

In addition to the conventional method of retraining, techniques such as
online learning enable ML models to learn from data one example at a time
and adapt to changes in underlying distribution [16, 29]. These approaches,
discussed extensively over the years, are pivotal in maintaining the relevance
and effectiveness of ML models in dynamic settings [43]. In the following
section, the paper examines the basics of this incremental learning process.

3.4 online machine learning 19

3.4 online machine learning

3.4.1 Definition

To address the problem of concept drift, ML models need to keep learn-
ing from new data and adjust their parameters and weights accordingly.
They update themselves based on the new distribution of the data. [29]. A
continual learning process like this is called online learning or incremental
learning. The models update by processing individual instances from a data
stream sequentially, one element at a time. A stream constitutes a series of
individual elements, each representing a collection of features known as a
sample. This technique directly contrasts traditional batch-trained ML mod-
els, which learn from large datasets that must be available at the beginning
of training. On the other hand, online learners can operate without having
all the data available right away [16]. However, single-instance processing
has the downside of bad scaling to big data since optimization algorithms
cannot use the advantages of vectorization [20]. Most online learners assume
that the most recent data holds the most significant relevance for current pre-
dictions and that a data instance’s importance diminishes with age. There-
fore, single example models store only one example at a time in memory and
learn from that example in an error-driven way. They cannot use old ex-
amples later in the learning process [16]. While online learning algorithms
usually do not have an explicit forgetting mechanism, like abrupt forgetting
or gradual forgetting, they can still forget old information because the model’s
parameters update in a way that overwrites or dilutes the knowledge it previ-
ously acquired. This dilution can still lead to a significant challenge in online
learning called catastrophic forgetting. In this phenomenon, a shift in tasks
or concepts occurs unpredictably, and learning new information leads to a
sudden loss of knowledge about previously learned patterns. Especially in
environments prone to drift, catastrophic forgetting is a problem for models
that continually learn from data streams. Methods to deal with this include
constraining the updates of the model during new task learning using regu-
larization techniques or dynamically selected learning rates [24].

3.4.2 Optimization for Online Learners

To understand how online models learn, it is necessary to understand how
traditional optimization algorithms work. A straightforward example show-
casing the inner workings of such an algorithm is a simple linear regression
model using Gradient Descent as an optimizer.

The goal of a regression problem is to predict a continuous output value
based on a set of input features. The most simple algorithm for regression
problems is linear regression, a method for modeling the relationship be-
tween a dependent variable and one (univariate) or more (multivariate) in-
dependent variables [42]. It is called "linear" because the model assumes that

3.4 online machine learning 20

the relationship between the variables is linear, meaning that the change in
the dependent variable is directly proportional to the changes in the inde-
pendent variables. The mathematical equation for such a model with only
one independent variable is denoted as follows:

yi = β0 + β1xi. (3.3)

The variables β0 and β1 are the learnable parameters of the model, where β0

ist the intercept of the line and the y-axis and β1 is the slope of the line [42].
Training happens by fitting the model to the available data, using a method
such as least squares optimization, or by solving a system of linear equations.
At its core, training means fitting this straight line to data. A resulting model
could look like the following Fig. 3.5.

Figure 3.5: Linear Model Fitted to Data

The main difference between linear and non-linear regression is the form
of the relationship between the dependent and independent variables. The
relationship is more complex in non-linear regression and may not be a
straight line. The equation is a polynomial of degree n:

yi = β0 + β1xi + β2x2
i + . . . + βnxn

i . (3.4)

Overall, the choice between linear and non-linear regression depends on the
nature of the data. Linear regression is a good starting point for modeling su-
perficial relationships, but non-linear regression may be necessary for more
complex data. Fig.3.6 shows an example of a non-linear model.

Although training can happen using least squares optimization, a more pop-
ular algorithm called Gradient Descent is commonly used in training ma-
chine learning models. It is an iterative algorithm that seeks to find "[...]
the parameters which minimize a mathematical function" [23], a classical
optimization problem. The function to optimize is the loss function of the
model. Since the loss function is a complex, high-dimensional function, in
most cases, it is not feasible to calculate the global minimum of it directly.
The loss function determines how good or bad the model is. It determines
the difference or error between a model’s predicted output and the given

3.4 online machine learning 21

Figure 3.6: Non-Linear Model Fitted to Data

data’s actual value. Choosing the proper loss function is essential to reflect
the model’s goals. Given the loss function L(x), the input variables x need to
be tweaked in a way that L(x) is minimized [23]. The algorithm achieves this
by making minor adjustments to the function parameters in the direction of
the negative gradient. The gradient of a function is "[...] a vector of partial
derivatives" [10, p. 8], a derivative f ′(x) being a function that describes how
fast the function f (x) grows or decreases at a given point x. A partial deriva-
tive is simply the derivative of a function focusing only on one of the input
variables and considering the other inputs as constants. The partial deriva-
tive of a function f with respect to an input variable x would be denoted
as:

∂ f
∂x

. (3.5)

It describes the rate of change for the function with respect to the input x.
So, the gradient is a vector that points toward the most significant rate of
increase of the function and is used to determine how the function’s inputs
have to be tweaked to minimize or maximize f (x). It is represented as:

∇ f (x). (3.6)

To find the minimum of the function, the algorithm takes steps in the op-
posite direction of the gradient, as this will move it toward the minimum.
Calculating such a step downhill involves subtracting the gradient of the
loss function ∇xL(xi−1) from the input variables’ vector xi−1. The subscript
x indicates that the gradient is taken with respect to the input variables. The
resulting formula for calculating this update can be described as:

xi = xi−1 − α∇xL(xi−1). (3.7)

The parameter α is called the learning rate. It describes the step size taken
in the opposite direction of the gradient. This whole concept is more ac-
cessible when looking at it graphically (Fig. 3.7). The loss function for this
example, denoted as f (x), is straightforward. There is only one input, mak-

3.4 online machine learning 22

ing it a one-dimensional problem. Real-world problems can have thousands
of inputs, but these high-dimensional problems are hard to visualize. The
learnable parameter is initialized randomly at the beginning of the Gradient
Descent algorithm. After that, the algorithm finds the corresponding gradi-
ent to take a step in the opposite direction, depicted in Fig. 3.7 by the red
arrow. This process repeats until the loss function reaches a minimum and
the gradient is near zero. For the example shown in the figure, the algorithm
will most likely converge to the local minimum at x ≈ 1.3.

Figure 3.7: Gradient Descent Steps Visualized

Several problems may come with Gradient Descent, like overfitting the given
data. Overfitting means that a model "[...] performs well on the training data,
but it does not generalize well" [17]. In this case, the model memorizes the
examples it is shown instead of learning a pattern behind them. Another one
of those problems is a local minimum, a "[...] suboptimal solution [...]" [23,
p. 116] for the loss function in which the iterative algorithm may get stuck.
Since the gradient of such a point is zero, the algorithm may get stuck here.
The most crucial parameter to tweak concerning these problems is the learn-
ing rate. If it is too small, the algorithm will take a long time to converge,
but if it is too large, it may overstep the minimum and diverge. Finding a
reasonable learning rate is often a matter of trial and error and can require
careful tuning. Today, there are many variations of Gradient Descent, all of
which try to bypass the abovementioned problems. Some more popular vari-
ations are Momentum, Adagrad, RMSProp, and Adam [23]. Examining these
variations further would go beyond the scope of this thesis. Traditional Gra-
dient Descent uses the entire dataset to compute the gradient at each step.
This approach is expensive, but in exchange, the approach guarantees the
most accurate update direction [23].

3.4 online machine learning 23

Unlike traditional Gradient Descent, which uses the entire dataset to com-
pute the gradient at each step, Stochastic Gradient Descent uses a random
sample of the data, or a mini-batch, to compute the gradient, which has sev-
eral benefits. First, it allows the algorithm to scale to large datasets that may
not fit in memory. Second, it introduces randomness into the process, which
can help the algorithm escape from local minima and converge to the global
minimum [23].

Finally, using Gradient Descent for online learning requires another varia-
tion, called Online Gradient Descent [22]. It involves using only a single
example at a time. The model will be trained incrementally with every new
example it sees. This method is a good choice if the model should learn from
a data stream instead of a batch of data. The algorithm is designed for effi-
ciency in its learning steps, enabling it to quickly and cost-effectively adapt
to new data as it becomes available. This feature facilitates on-the-fly learn-
ing, accommodating incoming data in real-time [17, p. 16]. It is relatively
cheap compared to training on the whole batch, but the update direction
will be less precise, which leads to slower or no convergence. However, this
circumstance can be good since the model may not get caught in a local
minimum as quickly or overfit the training data [23]. As seen in the first sec-
tions of this chapter, online learning is a special type of ML in which models
learn from streams of data instead of batches, which means that the model
can learn and adapt to new data in real-time without retraining the entire
model from scratch on the entire dataset. An online model does so by de-
ducting information from the data iteratively, where it is provided the input
data, along with the ground truth in each iteration [39]. It makes a predic-
tion and compares it to the ground truth, measuring the error or loss. Using
an optimization algorithm, such as Online Gradient Descent, the learnable
parameters of the model are tweaked to minimize the loss. Consequently,
online learning can handle datasets that tend to concept drift [22, 39].

4
C O N C E P T A N D I M P L E M E N TAT I O N

As stated in the introduction, one of the contributions of this thesis is to
develop a solution for anomaly detection on time series data under concept
drift and later compare it with state-of-the-art methods in different bench-
marks. The concrete approach proposed in this chapter is prediction-based.
While traditionally batch ML has often been used for this kind of application
[26, 28, 31, 33], some implementations leverage online ML for training mod-
els and making predictions as well [2, 19, 36]. Even though these studies lay
the groundwork for the new ideas explored in this chapter, a gap exists in
online methods for anomaly detection in time series, especially in applying
ARIMA models for forecasting. The following sections introduce the pro-
posed solution’s core concept, explain design decisions and implementation
details, and discuss encountered challenges and their resolutions.

4.1 conceptual framework

Based on the telemetry data from the IP Backbone monitoring systems,
DT needs an accurate and robust way of detecting anomalies in those sys-
tems. Since there is no labeled data, the detection algorithm has to be un-
supervised. The proposed solution adopts a prediction-based approach to
anomaly detection in time series capable of generating anomaly scores. This
type of anomaly detection operates on the principle that outliers manifest as
high prediction errors in a model trained on the data’s normal behavior [8].
Choosing the appropriate model to learn the normal behavior of the data is
crucial, as an unsuitable choice results in insufficient predictions and, there-
fore, low detection accuracy. What is the best fitting model depends on the
underlying data and associated assumptions [1, pp. 5–7]. Certain assump-
tions become relevant for telemetry data from the IP Backbone. As this is
time series data, the order and autoregression of it are significant, leading to
the conclusion of using ARIMA for building a normal model and forecasting
expected future behavior [1, pp. 276–279].

A critical problem with this approach so far is handling concept drift. Real-
world time series data, especially in dynamic environments like DT’s IP
Backbone, often exhibit nonstationarity and continuous evolution, resulting
in changes in the underlying distribution of the data over time [13]. DT is
currently working on several configuration automation projects, leading to
environments changing even more rapidly, necessitating continuous adapta-
tion of the ML models used in monitoring. Instead of manually retraining
models on a regular schedule or dynamically whenever concept drift is de-
tected, the proposed solution to this problem is utilizing online learning

4.2 design and implementation 25

instead of traditional batch ML. Some time series, like monitoring data, are
continuous, meaning that online learning algorithms can address them as
a data stream [18]. Online learning enables a model to adapt incrementally
to the evolution of this stream, automatically adapting to changes in un-
derlying statistics [2]. An online variant of ARIMA proposed by Anava et
al. [6] can handle streamed time series data. It employs a particular form
of Gradient Descent designed for continuous model training, which works
like classic Gradient Descent but only processes one example simultaneously.
The algorithm randomly initializes the coefficients ϕ and θ for the AR and
MA components, so the model can make its first prediction ŷt at iteration t.
The model suffers a loss when it receives the ground truth value yt. ARMA
Online Gradient Descent aims to minimize the sum of these losses by tweaking
the weights in the right direction, as shown in Chapter 3.4.

4.2 design and implementation

The open-source Python library River holds a diverse suite of existing tools
and models for online learning. Examples include regression models, clas-
sification models, clustering algorithms, and forecasting models such as
ARIMA’s online variant mentioned above. Besides different ML models, the
library also offers utilities such as pipelines, tools for hyperparameter tun-
ing, evaluation, and feature engineering, to name a few, specifically designed
for online learning [20]. Therefore, this thesis presents the proposed solution
as an additional module for River, called PredictiveAnomalyDetection (PAD)1,
actively enhancing its already available range of features2. The module’s
design as a flexible framework aims to make prediction-based anomaly de-
tection universally applicable across various applications. The underlying
model for learning normal behavior is not set in the module but can be de-
fined when initializing a new detector instance. This design adds versatility,
allowing users to choose from various models available under the estima-
tor class, which is the base class of different ML models in River and the
placeholder for the model of normal behavior inside the presented module.
For the problem stated in this thesis, the online ARIMA variant plugs into
this framework to detect anomalies in time series data under concept drift.
However, users can choose their base estimator depending on their use case
and the characteristics of their data. Notably, while anomaly detection is an
unsupervised task that does not require anomaly labels, the base estimator
still needs labeled data for incremental training, e.g., timestamps and mea-
surement values when working with time series.

The chosen design conceptually separates the modeling of expected behavior
from the scoring process, similar to the approach used in [26]. The base esti-
mator predicts the expected behavior of the data and compares it to the ac-

1 The code is in the official repository: https://github.com/online-ml/river/pull/1458.
2 The complete documentation for River can be found on their official website:

https://riverml.xyz/latest/.

https://github.com/online-ml/river/pull/1458
https://riverml.xyz/latest/

4.2 design and implementation 26

Figure 4.1: Predictions of Online ARIMA Model

Figure 4.2: Error of Online ARIMA Model

tual value to calculate the error. The detection algorithm uses this error value,
independently of the base estimator it came from, to calculate the anomaly
score. Fig. 4.1 shows a cutout of forecasts made by an online ARIMA model
on time series data. The model handled the series incrementally, so it made a
forecast with a horizon of one and then got the ground truth value to update
its weights accordingly. The data has a point outlier in it. Fig. 4.2 depicts the
error the online model made on each forecast. It is visible that the error is
most significant at the location of the point anomaly.

The scoring mechanism involves comparing the prediction with the ground
truth, where deviation signifies error and, consequently, the score. The most
straightforward idea is to use the error as the anomaly score directly, but
usually, an anomaly score is a floating point value between 0 and 1.0. An
assumption made in literature is that the error distribution, also called error
reference distribution, is Gaussian [19, 26]. Based on this assumption, Aggar-
wal proposed to use the Z-value, the number of standard deviations a data
point is distant from the mean, as an anomaly score [1, p. 73]. Others sug-
gested laying a threshold on the error by declaring any value more than
three standard deviations away from the mean (3σ rule) as anomalous [13].
These approaches also do not generate an anomaly score between 0 and 1.0,

4.3 challenges 27

Figure 4.3: Error Distribution of Online ARIMA Model

but they inspired the solution used in the PAD module. This process entails
keeping track of error values, including their mean µ and standard deviation
σ, and dynamically updating these statistics as new data comes in [15]. After
the base estimator makes a new prediction and calculates the new error ε,
the scoring mechanism checks if the following equation is true:

ε ≥ µ + 3σ. (4.1)

If the equation is valid, the mechanism sets the anomaly score to its max-
imum of 1.0. If not, the score gets linearly distributed between 0 and 0.99
accordingly. The user can set the coefficient of σ as a hyperparameter of
the PAD module to adjust the sensitivity to anomalies. Fig. 4.3 presents the
error distribution from the earlier example using a Kernel Density Estima-
tion (KDE) plot. The KDE plot suggests that the errors approximate a normal
distribution. Additionally, the influence of the point outlier is observable as a
distinct feature in the right tail of the plot. The more accurate the model, the
better the approximation of a normal distribution, resulting in more accurate
anomaly detection.

4.3 challenges

During the development and testing phases, two main problems surfaced,
highlighting the complexities inherent in implementing online anomaly de-
tection. These difficulties are best illustrated using an example. For this pur-
pose, Fig. 4.4 shows another time series and an online ARIMA model’s fore-
casts. This time, the data depicts a sine wave with a sudden shift, simulating
concept drift. In Fig. 4.5, the corresponding errors made by the model during
forecasting are shown. One of the primary challenges visible in this Figure is
the model’s initial inaccuracy. At the outset, the model lacked sufficient data
to make accurate predictions, resulting in high error values and erroneously
high anomaly scores. A fix for this problem is incorporating a warmup pe-
riod in which the model can acquire the necessary knowledge to identify
anomalies effectively without outputting scores. The user can set the length

4.3 challenges 28

Figure 4.4: Forecasting on Time Series with Concept Drift

of this period as needed. Furthermore, it is hard for an online learning algo-
rithm to distinct between an outlier and concept drift [1, p. 273]. An outlier
and a structural break will both lead to the detector identifying an anoma-
lous point since the boundary between the two is not strictly specified [19].
While an online learner’s purpose is to be able to adapt to drift, learning
incrementally also leads to the adaptation to anomalous data instances. Out-
lier observations can cause the model to deviate from standard patterns. The
optimizer uses the residual from such an observation to perform a single on-
line Gradient Descent step as it would with every error, tweaking the model
weights to fit the anomalous data instances better. This model update dis-
torts the error values following the anomalous point. This wave-like effect
that any anomalous point can have on the error value is also visible in Fig.
4.5 at the location of the drift in the data. Subsequent regular observations
will correct this behavior of the model, but it takes some iterations to recover
fully [19]. Simply not learning outliers is the most straightforward solution
discussed in some reviewed literature. Whenever an anomaly is detected, the
model does not learn the instance. However, this approach also hinders its
ability to adapt to concept drift. The problem is that an anomaly detection
algorithm initially recognizes abrupt drift as an outlier. Usually, the model
learns the new behavior and quickly adapts without problems. Guo et al.
[19] explain that if a change point is misclassified and withheld from the
model, subsequent data points will likely be incorrectly identified as out-
liers, possibly delaying or halting the learning of new distributions.

Such a termination to incremental learning is not expedient. Consequently,
there is another approach to solving this issue. Methods like Adaptive Gra-
dient Learning, proposed by Guo et al., dynamically adjust the learning rate
depending on what type of outlier to expect. The learning rate is reduced
when a new observation is a potential point anomaly since the model should
not adapt to an anomalous example. Conversely, if it is likely a change point
regarding concept drift, the learning rate is adjusted to quickly adapt to
the new distribution [19, 36]. This solution minimizes the impact of point
anomalies while maintaining the ability to handle concept drift gracefully

4.3 challenges 29

Figure 4.5: Errors of Forecasting under Concept Drift

and robustly. The researchers implement this by keeping a sliding window
over the last n anomaly scores and calculating the so-called suspicion ratio
[19], the ratio of suspicious points in the sliding window. If the suspicion
ratio is high and there are a lot of large values in the last n anomaly scores,
the probability that concept drift is present is significant. On the other hand,
if the ratio is low, the current instance has a higher probability of being an
outlier. The learning rate is then adjusted according to the suspicion ratio,
positively correlated with the learning rate. River enables the dynamic adap-
tation of hyperparameters, such as the learning rate, by providing a function
to mutate estimators.

5
E M P I R I C A L F I N D I N G S

This chapter presents the empirical findings of the experiments conducted
to answer the research questions outlined earlier in this thesis. There are
a series of benchmarks to evaluate the proposed online learning approach
for prediction-based anomaly detection. The first set of benchmarks exam-
ines the proposed method’s detection accuracy and time series forecasting
performance. It compares these against state-of-the-art techniques used in-
side DT. The subsequent benchmarks evaluate the computational efficiency
regarding time expenditure and resource utilization1.

5.1 exploratory data analysis

Figure 5.1: Traffic Data of Router in IP Backbone

Since the experimental analysis aims to provide realistic insights into the
operational efficiency of the presented online learning solution and a realis-
tic comparison to state-of-the-art batch learning techniques, the benchmarks
resemble an actual use case based on historical data from the IP Backbone
environment. Fig. 5.1 depicts the real-life traffic data utilized for the experi-
ments. The monitoring system currently active at DT collects this data from
a router inside the Backbone and makes it available with the help of Elastic-
search2, a distributed search and analytics engine. The final dataset contains
three months of data, with instances recorded hourly, resulting in 2160 indi-
vidual data points. Each point resembles the hourly average incoming traffic
of the router measured in gigabits per second. This data, predominantly
clean and not excessively noisy, provides a realistic basis for the analysis.

1 The code for preparation, visualization, and benchmarking can be found in the repository:
https://github.com/sebiwtt/OnlineVBatchExperiments/tree/669e.

2 See https://www.elastic.co/de/elasticsearch.

https://github.com/sebiwtt/OnlineVBatchExperiments/tree/669e
https://www.elastic.co/de/elasticsearch

5.1 exploratory data analysis 31

Figure 5.2: Concept Drift Detection using ADWIN

Yet, there is one apparent shift in the data approximately after two months.
Drift detection algorithms like ADWIN identify this abrupt change in the
data as concept drift, and Fig. 5.2 shows the index at which the algorithm
detects the drift. It is hard to determine the exact source of this drift, but a
configuration change likely resulted in more incoming traffic to the observed
router. After the change, the mean traffic is higher than before, but the overall
seasonal pattern stays the same.

Figure 5.3: Distribution of Traffic Data before Drift

Figure 5.4: Distribution of Traffic Data after Drift

5.2 experimental setting 32

Figure 5.5: Autocorrelation Function of Traffic Data

Figure 5.6: Traffic Data with Synthesized Anomalies

The KDE Plots in Fig. 5.3 and Fig. 5.4 illustrate the distribution before and
after the concept drift making the shift in average traffic visible. Furthermore,
it is necessary to analyze the seasonal behavior of the data for time series
forecasting. A repeating pattern is visible when looking at the data. Such
a pattern likely arises because the underlying system, the router, behaves
similarly over a fixed period. In this case, the pattern repeats daily, meaning
that the router goes through the same cycle once a day. The autocorrelation
function plot in Fig. 5.5 confirms this assumption. It cycles with a peak every
24 lags. Since the data is recorded hourly, 24 instances correspond to one day.

5.2 experimental setting

5.2.1 Methodology

To ensure unadulterated and comparable results, all of the benchmarks ran
on the same dedicated virtual machine inside a docker container, with no
other active processes to ensure encapsulation of the system running the
simulation as much as possible.

5.2 experimental setting 33

Two benchmarks measure different performance metrics to answer the first
research question of how accurate the proposed approach is compared to
the baselines. The first experiment involves the time series forecasting perfor-
mance of the different models. Forecasts of future behavior are the basis of
prediction-based approaches, and more accurate prediction results in more
accurate detection of anomalies [26]. The better the model can represent the
normal behavior of the data, the greater the relative deviation between fore-
cast and ground truth is when an anomaly occurs. Thus, the accuracy of
the underlying time series model is directly proportional to the anomaly
detection effectiveness. The first benchmark measures the Mean Absolute
Error (MAE) and Mean Squared Error (MSE) to evaluate the forecasting per-
formance [17, p. 44]. The MAE is the average of the absolute differences
between predicted and actual values. The MSE, on the other hand, is the
average of the squares of the differences between the predicted and actual
values, giving more weight to larger errors.

The second test addresses anomaly detection accuracy, focusing on identify-
ing point anomalies and contextual anomalies. Since the data is clean and
no authentic anomaly labels are available, the benchmark relies on synthe-
sized anomalies to measure the quality of the different algorithms. Fig. 5.6
displays a manipulated dataset version with synthesized anomalies in the
latter third of the set. This way, the majority of the anomalies occur after
the concept drift. The benchmark randomly selects 2% of data points in this
interval for each run and turns them into anomalous instances. The data set
now also contains binary labels that show whether a data point is normal or
anomalous. The evaluation metrics include precision, recall, and the F1 score
[17, pp. 93–95]. The precision is the ratio of correctly predicted positive ob-
servations, True Positives (TP), to the total predicted positives, TP and False
Positives (FP):

Precision =
TP

TP + FP
. (5.1)

On the other hand, the recall is the ratio of correctly predicted positive ob-
servations (TP) to all the instances that are actually positive, TP, and False
Negatives (FN). It is also called the true positive rate:

Recall =
TP

TP + FN
. (5.2)

Following, the F1 score is the harmonic mean of precision and recall, provid-
ing a single metric that balances both. It is often used when there is a class
imbalance in the data, which is the case for this use case. The higher this
value, the better the algorithm performed:

F1 Score = 2 × Precision × Recall
Precision + Recall

. (5.3)

5.2 experimental setting 34

Using the plain accuracy measured in percent is infeasible in case of imbal-
anced data. Since only 2% of the data is anomalous, an algorithm always
outputting an anomaly score of 0 would achieve an accuracy of 98% while
missing all actual anomalies. Further, the algorithms need binary labels in-
stead of anomaly scores to calculate these metrics. Accordingly, they apply
a threshold to the scores to convert them to labels. However, thresholding is
a problem of its own and out of the scope of this thesis [37]. Consequently,
the thresholds for converting scores to labels are automatically determined
to optimize each model’s F1 score, assuring a fair comparison.

Next, the second research question deals with the proposed module’s com-
putational efficiency and resource utilization compared to the baselines. Sub-
sequently, the third benchmark addresses resource consumption by running
the models for a fixed period and keeping track of CPU and RAM utilization.
Finally, the fourth and last experiment will examine the models’ time con-
sumption differences by measuring each model’s time for training, making
predictions, and calculating anomaly scores.

Each of the benchmarks discussed in this section performs its measurements
100 times. They then average their samples to provide precise outcomes.

5.2.2 Software and Models

This research incorporates two baseline models for comparative analysis, se-
lected due to their current application for anomaly detection at DT. Hence,
these models provide a realistic comparison for the proposed PAD module.
The models used for the benchmarks are a batch SARIMA model from the
statsmodels library3 for Python and the Prophet model by Meta, presented ear-
lier in this thesis [41]. These time series forecasting models can also serve as a
foundation for prediction-based anomaly detection. Hyperparameter tuning
for all three models occurred manually before the measurements to ensure
the optimal operation of each model. The benchmarks measuring time and
resource consumption do not consider the hyperparameter tuning to pro-
vide comparative results.

The first baseline is the traditional SARIMA model. It needs to train on a
batch of data to do time series forecasting. Therefore, the dataset is divided
into a training set containing the first 800 hours of data and a test set contain-
ing the rest. After the model fits the training data, it can predict future data.
SARIMA outputs the predictions as a batch of data, which makes it unsuit-
able for online detection. The model stays static during the benchmark and
does not undergo training with new data. Anomaly detection works simi-
larly to the techniques proposed in the PAD module. A SARIMA model also
outputs a confidence interval for its forecasts, quantifying the uncertainty
in the predictions. This interval is the range in which future observations

3 See https://www.statsmodels.org/stable/index.html.

https://www.statsmodels.org/stable/index.html

5.3 results 35

fall within a certain probability. Applications inside of DT use the forecasts
and confidence intervals to calculate an anomaly score by measuring the dis-
tance of the ground truth from the upper or lower bound of the interval. If
the ground truth lies outside this interval, the anomaly score is set to 1.0, and
if it is inside, the score is linearly distributed between 0 and 0.99. Another
challenge is finding optimal parameters for a SARIMA model, but since this
topic is outside this thesis’s scope, this section does not explore it. The model
applied in the following benchmarks was found using AutoArima provided
by the pmdarima library4.

Prophet is the additional baseline. It is an alternative forecasting method to
SARIMA and is vastly used at DT due to its speed and simplicity [41]. Like
the first baseline, it follows a batch training approach, utilizing the initial
800 hours of data for training and the remaining dataset for evaluation. The
calculation of anomaly scores works in the same way as it does for the batch
SARIMA model.

Chapter 4 already introduced the new online learning-based approach for
prediction-based anomaly detection called PAD. It stands out for its online
prediction capability, continually updating parameters with incoming data.
Therefore, training covers the entire dataset, yet performance metrics calcu-
lation begins from hour 801, ensuring fairness compared to the other models
that only evaluate the test set. To handle the time series data of this use case,
the underlying model of normal behavior for the PAD module is the online
SARIMA variant discussed earlier [5]. Both the online and batch versions of
the SARIMA model work with the same parameters to ensure a consistent
basis for comparison.

5.3 results

Table 5.1 holds the result of the time series forecasting benchmark with the
MAE and MSE values rounded to the fourth decimal place.

Model MAE MSE

PAD 0.1912 0.0366

SARIMA 0.8727 0.7616

Prophet 0.9140 0.8354

Table 5.1: Result of Forecasting Performance Benchmark

PAD performed better than SARIMA and Prophet, scoring a lower MAE
and MSE value. The absolute error for the online model is 0.1912 on aver-
age, which, in the dataset context, means that the model’s predictions of
incoming traffic are off by 0.19 gigabit/s on average.

4 See https://pypi.org/project/pmdarima/.

https://pypi.org/project/pmdarima/

5.3 results 36

Following, Table 5.2 displays the values of the precision, recall, and F1 score
values also rounded to the fourth decimal place.

Model F1 Score Precision Recall

PAD 0.7589 0.7762 0.7616

SARIMA 0.5970 0.9259 0.4444

Prophet 0.1772 0.5931 0.1684

Table 5.2: Result of Detection Accuracy Benchmark

Similar to the results from the first benchmark, PAD outperforms SARIMA
and Prophet with an F1 score of 0.7589. Prophet performs considerably
worse than SARIMA, and the SARIMA model scores the highest precision.
The observation that precision and recall metrics for the PAD model are ap-
proximately equivalent is noteworthy. In contrast, the SARIMA and Prophet
models exhibit a higher precision than their respective recall values.

Figure 5.7: Result of CPU-Usage Benchmark

Fig. 5.7 shows the CPU usage of the models in comparison. It is visible
that SARIMA and Prophet utilize the CPU more than PAD. On average,
SARIMA occupied 53.42% of the CPU’s power, whereas PAD used 15.79%,
and Prophed averaged 25.04% but with a more uneven progression.

The plot in Fig. 5.8 visualizes the results of the memory usage benchmark.
All three models have an even memory utilization. PAD occupies less of the
system’s memory than the SARIMA and Prophet models, which train on the
batch of training data. The difference is relatively small. While PAD used
53.78% of the system’s memory, SARIMA used 53.20% on average. Prophet
uses the most memory with an average of 57.00%. The total numbers may
vary depending on the underlying system, but the relative difference is note-
worthy.

5.3 results 37

Figure 5.8: Result of RAM-Usage Benchmark

The last experiment dealt with the time spent training the models, forecast-
ing future values, and calculating anomaly scores. Table 5.3 shows the mean
values and variance of the recorded samples.

Model Mean Time Variance

PAD 200 ms 533 µs

SARIMA 1min 14s 559 ms

Prophet 466 ms 4.54 ms

Table 5.3: Result of Timing Benchmark

PAD showcased the fastest mean execution time at 200 milliseconds, with
a low variance of 533 microseconds, indicating quick processing and consis-
tency in its performance. Prophet demonstrated a moderate mean execution
time of 466 milliseconds. On the other hand, using SARIMA resulted in a
significantly longer mean execution time of 1 minute and 14 seconds, sug-
gesting that while SARIMA provides thorough analysis, it does so at the
cost of time efficiency5. On larger datasets batch-trained models may be able
to perform better on this benchmark because they can make better use of
vectorization.

5 While this disproportionately long training time seems off, numerous repeti-
tions have confirmed this measured value. An issue was opened in the repos-
itory of the statsmodels library to investigate the reason for this behavior:
https://github.com/statsmodels/statsmodels/issues/9153.

https://github.com/statsmodels/statsmodels/issues/9153

6
D I S C U S S I O N

This thesis revolves around a series of research questions and objectives to ex-
plore the performance and resource consumption of online ML in prediction-
based anomaly detection under conditions of concept drift. The RQs ad-
dressed were:

RQ1: How accurate is the proposed online learning approach to prediction-
based anomaly detection compared to state-of-the-art techniques on
time series data under concept drift?

RQ2: How does the proposed approach perform compared to state-of-the-
art techniques regarding computational efficiency and resource utiliza-
tion?

RQ3: What are the specific challenges and limitations when using online
ML for prediction-based anomaly detection on time series data under
concept drift?

The following sections will discuss the results obtained from the bench-
marks, highlighting the strengths of the proposed approach in certain as-
pects while also acknowledging potential weaknesses of the model and the
study itself. In addition, this chapter aims to answer the research questions
posed at the outset comprehensively and explore the broader implications
of the findings.

6.1 key findings

The first benchmark evaluated the forecasting performance of the different
models by measuring their MAE and the MSE. These measures are essential
in understanding the accuracy and reliability of the compared approaches

Figure 6.1: PAD Forecast on Traffic Data

6.1 key findings 39

Figure 6.2: SARIMA Forecast on Traffic Data

in predicting anomalies under conditions of concept drift since the better
a model can represent the regular patterns in data, the easier it can iden-
tify outliers. Section 3.4.2 argued that the online gradient descent steps are
computed over a single example instead of a batch of data, making them
cheaper to compute but less accurate. This knowledge leads to the assump-
tion that a batch model will outperform an online model in this benchmark.
However, both models operating on batches have a higher MAE and MSE
value, indicating worse performance than the online learning competition.
This circumstance is likely due to the online model’s adaptation to the con-
cept drift. In contrast, the batch models do not adjust and suffer significant
losses because of the sudden break in the data. Another possibility may be
that online gradient descent enabled the model to escape a local minimum
that the batch model could not escape. So, in this case, the online model was
superior because the concept drift in the data did not influence it as much
as the batch model.

Figure 6.3: Error of PAD Forecast on Traffic Data

This assumption is confirmed when looking at the visualization of the fore-
casts from PAD in Fig. 6.1 and the SARIMA model in Fig 6.2. Since SARIMA
is trained once and does not learn continuously, it cannot cope with the
abrupt drift. On the other hand, the forecasting model of PAD adapts to

6.1 key findings 40

Figure 6.4: Error of SARIMA Forecast on Traffic Data

changes in the data fast. Therefore, the error values it produces remain sta-
ble with a single peak at the position of the abrupt change (Fig. 6.3), while
the forecasts of both SARIMA (Fig. 6.4) and Prophet result in very high er-
rors after the concept drift.

PAD also performs best regarding the F1 score. Its recall and precision values
are close to each other. While the SARIMA model has the highest precision
overall, both SARIMA and Prophet have a lower F1 score, as their precision
is higher than their corresponding recall, indicating that the instances the
models identify as positive are indeed positive most of the time. However,
the models still miss many actual anomalies, leading to a higher number
of false negatives. This circumstance is assumably due to the batch models’
high errors after the concept drift and the automatic threshold set to opti-
mize the F1 score. Table 6.1 shows the F1 scores of the models when calculat-
ing them before and after the concept drift independently, each with its own
optimized threshold. The performance of PAD is relatively consistent before
and after the drift happens. The batch models, on the other hand, show con-
siderable differences between the scores before and after the drift. Before
the abrupt change, SARIMA performed best, and Prophet performed better
than in the previous benchmark. This behavior strengthens the suspicion of
the problems batch models have with adapting to concept drift.

Model F1 Score before Drift F1 Score after Drift

PAD 0.8889 0.7826

SARIMA 0.9091 0.5000

Prophet 0.6000 0.3333

Table 6.1: F1 Scores before and after Drift

In light of these findings, it is evident that while batch learning methods like
SARIMA excel in scenarios devoid of concept drift, their performance is infe-
rior in the presence of such drift compared to online learning approaches like
PAD. This discrepancy underscores the inherent limitations of batch learn-

6.2 limitations 41

ing methods in dynamically changing environments. Regarding the first re-
search question, this leads to the conclusion that the proposed online learn-
ing approach demonstrates superior accuracy in prediction-based anomaly
detection on time series data under concept drift compared to state-of-the-
art techniques, affirming its effectiveness and robustness despite evolving
conditions.

Though retraining batch models could theoretically address concept drift,
it is unclear if an online learning approach is more efficient regarding re-
sources and time. The second research question addresses this problem. The
results of the CPU usage benchmark show that PAD requires the least com-
puting power on average. In addition, the results of the memory usage bench-
mark also show that PAD allocates less RAM than the SARIMA and Prophet
models. The difference is marginal, and all three models show an even mem-
ory consumption. The online gradient descent algorithm behind the forecast-
ing model of PAD uses a single example of data to calculate the correspond-
ing gradient and take a step in the direction that minimizes the loss function.
Each example can be loaded into memory one at a time. Hence, the whole
dataset does not occupy the memory simultaneously, as does the batch of
training data for SARIMA and Prophet. Further supporting the efficiency of
the proposed online learning approach, the timing benchmarks reveal that
PAD consistently outperforms the batch models in terms of speed. The low
computational cost of PAD’s calculations ensures faster processing times. In
stark contrast, the SARIMA model is significantly slower. It is necessary to
remember that an online model must always be available to receive incom-
ing data. Although it will run idle a lot of this time, it will still occupy some
resources.

The faster processing speed, combined with the previously discussed advan-
tages in CPU and RAM usage, underscores the superior overall efficiency
of the PAD approach in managing resources. These results match the points
discussed in section 3.4.2, answering the second research question. The in-
dividual optimization steps the online gradient descent algorithm performs
are cheaper to compute, resulting in lower resource usage and faster ex-
ecution time at the cost of slightly less accurate updates to learnable pa-
rameters [22, 23]. Consequently, this research highlights that online learning
approaches offer a more robust and cost-effective solution in environments
suffering from concept drift despite being marginally less accurate under
stable conditions.

6.2 limitations

The methodology employed in this study involves measurements and bench-
marks performed using actual data collected from a router in the IP Back-
bone of DT, which reflects only a single specific use case. This data includes
one type of concept drift and particular anomaly types, namely point and

6.2 limitations 42

contextual anomalies. Future research could address this limitation by ex-
ploring consecutive anomalies and using a predictive model-based approach
along with longer forecasting horizons [8], which this thesis notably did
not explore. Besides, the accuracy of prediction-based anomaly detection de-
pends on the suitability of the underlying model to the use case and the data,
emphasizing the need for precise tailoring. In this thesis, the focus on just
one dataset and use case presents a challenge in terms of generalizability.
As demonstrated by Schmidl et al. [37], who compared various algorithms
across real-world and synthesized benchmarks, no single anomaly detection
algorithm is universally superior. However, the specific characteristics of the
use case to which an algorithm is applied determine its effectiveness. One
assumption often made in the literature is that the distribution of forecasting
errors approximates a Gaussian distribution, which would simplify detect-
ing outliers [1, p. 73]. This assumption is not always valid and depends on
the adequacy of the model for the given context. For example, the KDE plots
in Fig. 6.5 and Fig. 6.6 show the corresponding error distributions of PAD
and the SARIMA model. Using the error distribution of the PAD model, it
is easier to distinguish outliers based on the prediction error.

Figure 6.5: KDE Plot of PAD’s Forecast Error

Figure 6.6: KDE Plot of SARIMA’s Forecast Error

6.2 limitations 43

Hence, it is a better fit for this specific use case. Other datasets from other
use cases might come with other explicit needs for a normal behavior model.

A further challenge regarding online learning models identified in this study
is the issue of distinguishing between concept drift and outliers, which is
particularly critical in anomaly detection, making them related problems [1,
p. 23]. Abrupt changes may appear as anomalies, and gradual drift might
not be as easily identifiable, making the line between drift and an anomaly
blurry. While innovative, the Adaptive Gradient Learning approach by Guo
et al. [19] presented in Chapter 4 is not infallible and requires thorough
testing for its effectiveness in different scenarios. Guo et al. found that the
concept of Adaptive Gradient Learning tends to be more effective when
predicting multiple steps, but this necessitates multiple ground truth values,
resulting in a delay in detection [19, 36]. In summary, the distinction between
concept drift and outliers presents a complex challenge in anomaly detection,
requiring careful consideration of the model’s response to different types of
drift and the potential introduction of specific tests and strategies to enhance
the model’s adaptability and accuracy.

Another crucial aspect not fully addressed in this study is the complica-
tion of hyperparameter tuning. The benchmarks did not consider this topic
to provide a fair comparison of the time and resource consumption dur-
ing training and inference only. In real-world applications, however, this
is a crucial aspect of the ML lifecycle and is often covered by ML Opera-
tions (MLOps) practices [25, 30, 38]. While online learning provides a solution
to concept drift, reducing the need for regular retraining often associated
with MLOps, it introduces specific challenges that MLOps must address.
Modern "parameter-laden" algorithms require delicate tuning because they
can be susceptible to parameter settings, such as internal thresholds or the
learning rate [27]. In online learning environments, this complexity intensi-
fies because naive methods such as grid or random search, which leverage
brute force, are not readily applicable [18]. Depending on the behavior of
the underlying system, it may even be necessary to adapt the fundamental
structure of a model. For example, changing any parameter p, d, q might be
necessary in the case of an ARIMA model. MLOps is pivotal in address-
ing these challenges. It involves hyperparameter tuning, continuous model
performance monitoring, the possibility of rollback to stable versions, and
efficient deployment strategies. However, most MLOps frameworks neglect
the unique challenges online learning presents for these practices and focus
on classical batch learning setups.

These limitations also answer the third research question. The difficulties of
using online learning models as a basis for prediction-based anomaly detec-
tion lie in selecting the appropriate model, thorough hyperparameter tuning,
either manual or with the help of automatic processes, and the inherent chal-
lenges in differentiating between anomalies and concept drift.

6.3 implications 44

6.3 implications

The findings from this research have practical implications, particularly for
industries that depend on real-time data analysis. The superiority of PAD
in individual and specific settings is evident, offering an efficient solution
for online anomaly detection if concept drift is present in the data. Using
an online ML model as the base for prediction-based anomaly detection can
be advantageous compared to a traditional batch-learning one. Unlike batch
models, PAD’s online learning capability makes it feasible for real-time ap-
plications and online processing of continuous data streams. Furthermore,
PAD’s proficiency in handling concept drift becomes a significant benefit in
industries where data non-stationarity is a norm. Distributions and trends
can change unpredictably in such environments, making traditional batch-
learning methods less effective. The ability of PAD to adapt continuously to
new data patterns without retraining makes it an invaluable tool in these
dynamic settings. This distinction is crucial in industries where timely and
accurate anomaly detection is essential, and it is not practicable to retrain
larger batch-trained models regularly [16].

One notable application of PAD is in the field of IoT, where it is common for
many devices to generate data continuously. Processing data online rather
than in batches is essential for real-time applications. With its low resource
consumption and rapid processing capability, PAD is well-suited to environ-
ments constrained by lower-end devices with limited computing power and
storage capacity. As Cook et al. suggest, in complex applications like the IoT,
incremental learning algorithms are a cost-effective and reliable solution for
real-time data processing [13].

7
S U M M A RY A N D F U T U R E W O R K

The objective of the presented work was to investigate the potential of online
ML for prediction-based anomaly detection for time series data, focusing on
addressing the challenges posed by concept drift. Dealing with drift is rel-
evant within dynamic and evolving landscapes, necessitating a robust, dy-
namic, and resource-efficient solution. Traditional batch-trained ML models
often falter in such scenarios due to their inherent limitations in adapting
to new patterns in the data. Online ML is a promising alternative, offering
real-time, instance-based processing capabilities and the ability to adapt to
concept drift. This study aimed to implement a PoC for prediction-based
anomaly detection using online ML and compare it to established methods
based on a use case provided by DT. Therefore, the thesis first conducted a
literature review, which informed the development of the PoC in the form of
the River module PAD. Previous research and implementations in the field
influenced the development of the presented module [26, 28, 31, 33]. The
subsequent steps included benchmarking and comparing the proposed solu-
tion to batch-trained SARIMA and Prophet, two techniques used at DT. The
discussion then centers on the empirical findings from these experiments,
outlining the key outcomes, limitations, and broader implications.

Online and batch learning are two different approaches to training ML mod-
els. First, batch learning uses the entire dataset or large batches of data to
train a model. Once trained, the model becomes static and cannot adapt to
structural breaks in the data. In the case of concept drift, retraining the model
using more recent data is necessary. Conversely, online learning enables a
model to learn incrementally using one example of data at a time, which
makes the model flexible. This learning strategy can also help prediction-
based anomaly detection algorithms, which use an ML model to learn the
normal data pattern and predict future behavior. These algorithms deter-
mine if a new data instance is an anomaly by comparing the forecast to the
actual data. The anomaly detection accuracy decreases if the base model is
flawed due to concept drift. Hence, online learning models can fix this issue
by offering adequate prediction performance, which is more robust to con-
cept drift.

The proposed solution, PAD, allows for selecting different online learning
models from the River library as the base model for learning normal be-
havior. For the benchmarks, an instance of PAD integrates online SARIMA
as its core model for learning behavioral patterns in time series data. This
approach is benchmarked against traditional batch-trained SARIMA and
Prophet models, focusing on timing, CPU and RAM usage, time series fore-

summary and future work 46

casting performance, and anomaly detection accuracy. The evaluation is
based on real-world data from DT’s IP Backbone, ensuring a fair and prac-
tical comparison. Although the benchmarks show that PAD has better fore-
casting performance and anomaly detection accuracy overall, they also indi-
cate that batch-trained SARIMA is the superior model if there is no concept
drift in the data. The online learning-based method outperforms SARIMA
and Prophet because of its quick adaption to the abrupt drift. It can adapt
quickly and maintain a relatively small error. In contrast, the batch learning-
based algorithms exhibit a significant error after the concept drift. Moreover,
the benchmarks showed that batch learning is slower than online learning
and requires more computing power and memory. In summary, the practi-
cal applications of online learning for prediction-based anomaly detection
extend across industries requiring real-time data analysis and operation in
environments with non-stationary data and limited computing resources,
making it a good fit for the monitoring use case of DT. In general, the choice
between online and batch learning methods heavily depends on the specific
requirements of the problem. This research underlines the growing need for
efficient, real-time, and adaptive machine learning solutions like PAD in the
modern data-driven landscape.

Effectively, while the study offers insights into the specific scenario exam-
ined, it underscores the need for further research addressing the core limita-
tions and implications discussed in the last chapter. First, there is the need
to investigate different types of online learning algorithms on more diverse
datasets. This exploitation helps validate this thesis’s findings across various
use cases and assess the generalizability and effectiveness of the proposed
approach across different contexts. Future studies might also examine the
application of DL models in an online setting for prediction-based anomaly
detection. DL could perform better than traditional models like ARIMA, es-
pecially in handling complex and non-linear data patterns. However, this
approach would require carefully considering the increased computational
costs and training time [46]. Besides, future research should give special pri-
ority to the topic of MLOps. In the online learning context, there are a lot of
open questions regarding monitoring model performance, hyperparameter
tuning, model versioning and deployment, and many others. Researchers
have already started to explore this topic, and developers have begun to
work on frameworks like Beaver1 or ChaCha [44]. Additionally, the distinction
between anomalies and concept drift remains a prominent challenge. Other
than the idea of Adaptive Gradient Learning, it could also be feasible to per-
form dedicated tests to determine whether an outlier is a structural break,
enabling models to differentiate between outliers and concept drift. Further
research in this area is crucial to develop more reliable models capable of
adapting to structural changes in data. Future research can significantly con-
tribute to advancing prediction-based anomaly detection in online ML by
addressing these areas.

1 See https://github.com/online-ml/beaver

https://github.com/online-ml/beaver

A P P E N D I X

B I B L I O G R A P H Y

[1] Charu C Aggarwal. An introduction to outlier analysis. Springer, 2017.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. “Un-
supervised real-time anomaly detection for streaming data.” In: Neu-
rocomputing 262 (2017), pp. 134–147.

[3] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. “A sur-
vey of network anomaly detection techniques.” In: Journal of Network
and Computer Applications 60 (2016), pp. 19–31.

[4] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-
Shishiny. “An empirical comparison of machine learning models for
time series forecasting.” In: Econometric reviews 29.5-6 (2010), pp. 594–
621.

[5] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. “Online
learning for time series prediction.” In: Conference on learning theory.
PMLR. 2013, pp. 172–184.

[6] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. “Online
learning for time series prediction.” In: Conference on learning theory.
PMLR. 2013, pp. 172–184.

[7] Albert Bifet and Ricard Gavalda. “Learning from time-changing data
with adaptive windowing.” In: Proceedings of the 2007 SIAM interna-
tional conference on data mining. SIAM. 2007, pp. 443–448.

[8] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano.
“A review on outlier/anomaly detection in time series data.” In: ACM
Computing Surveys (CSUR) 54.3 (2021), pp. 1–33.

[9] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time series analysis: forecasting and control. John Wiley & Sons,
2015.

[10] Andriy Burkov. The Hundred-Page Machine Learning Book. 2020.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly de-
tection: A survey.” In: ACM computing surveys (CSUR) 41.3 (2009),
pp. 1–58.

[12] Chris Chatfield. Time-series forecasting. Chapman and Hall/CRC, 2000.

[13] Andrew A Cook, Göksel Mısırlı, and Zhong Fan. “Anomaly detection
for IoT time-series data: A survey.” In: IEEE Internet of Things Journal
7.7 (2019), pp. 6481–6494.

[14] Jan G De Gooijer and Rob J Hyndman. “25 years of time series fore-
casting.” In: International journal of forecasting 22.3 (2006), pp. 443–473.

[15] Tony Finch. “Incremental calculation of weighted mean and variance.”
In: University of Cambridge 4.11-5 (2009), pp. 41–42.

bibliography 49

[16] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. “A survey on concept drift adaptation.” In:
ACM computing surveys (CSUR) 46.4 (2014), pp. 1–37.

[17] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. " O’Reilly Media, Inc.", 2022.

[18] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and
João Gama. “Machine learning for streaming data: state of the art, chal-
lenges, and opportunities.” In: ACM SIGKDD Explorations Newsletter
21.2 (2019), pp. 6–22.

[19] Tian Guo, Zhao Xu, Xin Yao, Haifeng Chen, Karl Aberer, and Koichi
Funaya. “Robust online time series prediction with recurrent neural
networks.” In: 2016 IEEE international conference on data science and ad-
vanced analytics (DSAA). IEEE. 2016, pp. 816–825.

[20] Max Halford, Jacob Montiel, Saulo Martiello Mastelini, Geoffrey
Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine, Heitor Murilo
Gomes, Jesse Read, Talel Abdessalem, et al. “River: machine learning
for streaming data in Python.” In: (2021).

[21] Douglas M Hawkins. Identification of outliers. Vol. 11. Springer, 1980.

[22] Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. “Online learn-
ing: A comprehensive survey.” In: Neurocomputing 459 (2021), pp. 249–
289.

[23] Nikhil Ketkar. “Stochastic gradient descent.” In: Deep learning with
Python. Springer, 2017, pp. 113–132.

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. “Overcoming
catastrophic forgetting in neural networks.” In: Proceedings of the na-
tional academy of sciences 114.13 (2017), pp. 3521–3526.

[25] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. “Machine
learning operations (mlops): Overview, definition, and architecture.”
In: IEEE Access (2023).

[26] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. “Generic and scal-
able framework for automated time-series anomaly detection.” In: Pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining. 2015, pp. 1939–1947.

[27] Rikard Laxhammar and Göran Falkman. “Online learning and sequen-
tial anomaly detection in trajectories.” In: IEEE transactions on pattern
analysis and machine intelligence 36.6 (2013), pp. 1158–1173.

[28] Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. “Future frame
prediction for anomaly detection–a new baseline.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 6536–
6545.

bibliography 50

[29] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan
Zhang. “Learning under concept drift: A review.” In: IEEE Transactions
on Knowledge and Data Engineering 31.12 (2018), pp. 2346–2363.

[30] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen, and Tommi Mikko-
nen. “Who needs MLOps: What data scientists seek to accomplish
and how can MLOps help?” In: 2021 IEEE/ACM 1st Workshop on AI
Engineering-Software Engineering for AI (WAIN). IEEE. 2021, pp. 109–
112.

[31] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Puneet Agarwal, et al.
“Long Short Term Memory Networks for Anomaly Detection in Time
Series.” In: Esann. Vol. 2015. 2015, pp. 89–94.

[32] H Zare Moayedi and MA Masnadi-Shirazi. “Arima model for network
traffic prediction and anomaly detection.” In: 2008 international sympo-
sium on information technology. Vol. 4. IEEE. 2008, pp. 1–6.

[33] Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz
Ahmed. “DeepAnT: A deep learning approach for unsupervised
anomaly detection in time series.” In: IEEE Access 7 (2018), pp. 1991–
2005.

[34] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den
Hengel. “Deep learning for anomaly detection: A review.” In: ACM
computing surveys (CSUR) 54.2 (2021), pp. 1–38.

[35] Mahsa Salehi and Lida Rashidi. “A Survey on Anomaly detection in
Evolving Data: [with Application to Forest Fire Risk Prediction].” In:
ACM SIGKDD Explorations Newsletter 20.1 (2018), pp. 13–23.

[36] Sakti Saurav, Pankaj Malhotra, Vishnu TV, Narendhar Gugulothu,
Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. “Online anomaly
detection with concept drift adaptation using recurrent neural net-
works.” In: Proceedings of the acm india joint international conference on
data science and management of data. 2018, pp. 78–87.

[37] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock.
“Anomaly detection in time series: a comprehensive evaluation.” In:
Proceedings of the VLDB Endowment 15.9 (2022), pp. 1779–1797.

[38] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. “Hidden technical debt in ma-
chine learning systems.” In: Advances in neural information processing
systems 28 (2015).

[39] Shai Shalev-Shwartz et al. “Online learning and online convex opti-
mization.” In: Foundations and Trends® in Machine Learning 4.2 (2012),
pp. 107–194.

[40] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. “Fast anomaly
detection for streaming data.” In: Twenty-second international joint con-
ference on artificial intelligence. Citeseer. 2011, pp. 1511–1516.

bibliography 51

[41] Sean J Taylor and Benjamin Letham. “Forecasting at scale.” In: The
American Statistician 72.1 (2018), pp. 37–45.

[42] Mark Tranmer and Mark Elliot. “Multiple linear regression.” In: The
Cathie Marsh Centre for Census and Survey Research (CCSR) 5.5 (2008),
pp. 1–5.

[43] Daniel Vela, Andrew Sharp, Richard Zhang, Trang Nguyen, An Hoang,
and Oleg S Pianykh. “Temporal quality degradation in AI models.” In:
Scientific reports 12.1 (2022), p. 11654.

[44] Qingyun Wu, Chi Wang, John Langford, Paul Mineiro, and Marco
Rossi. “Chacha for online automl.” In: International Conference on Ma-
chine Learning. PMLR. 2021, pp. 11263–11273.

[45] G Peter Zhang. “Time series forecasting using a hybrid ARIMA and
neural network model.” In: Neurocomputing 50 (2003), pp. 159–175.

[46] G Peter Zhang and Min Qi. “Neural network forecasting for seasonal
and trend time series.” In: European journal of operational research 160.2
(2005), pp. 501–514.

	Titelblatt
	Erklärung
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of abbreviations

	Thesis
	1 Introduction
	1.1 Problem Definition and Motivation
	1.2 Objective and Methodology
	1.3 Structure of the Thesis

	2 Literature Review
	3 Technical Background
	3.1 Anomaly Detection
	3.1.1 Definition
	3.1.2 Types of Anomalies in Time Series Data
	3.1.3 Methods for Detecting Anomalies

	3.2 Time Series Forecasting
	3.2.1 Definition
	3.2.2 Components of Time Series
	3.2.3 ARIMA Models

	3.3 Concept Drift
	3.3.1 Definition
	3.3.2 Types of Concept Drift
	3.3.3 Solution Approaches

	3.4 Online Machine Learning
	3.4.1 Definition
	3.4.2 Optimization for Online Learners

	4 Concept and Implementation
	4.1 Conceptual Framework
	4.2 Design and Implementation
	4.3 Challenges

	5 Empirical Findings
	5.1 Exploratory Data Analysis
	5.2 Experimental Setting
	5.2.1 Methodology
	5.2.2 Software and Models

	5.3 Results

	6 Discussion
	6.1 Key Findings
	6.2 Limitations
	6.3 Implications

	Appendix
	 Bibliography

