
https://bise-student.io

DIPLOMA THESIS

Analysis, conceptual design and implementation of a
web-application providing patient-friendly aggregation

and refinement of information in patient information
leaflets

Publication Date: 2022-02-22

Author
Tobias DEHLING
Karlsruhe Institute of Technology
Karlsruhe, Germany
dehling@kit.edu
0x6ca495d7b55310954f4b5f2986E5C11b6ed397E2

Abstract

Analysis, conceptual design and implementation of a web-application provid-
ing patient-friendly aggregation and refinement of information in patient in-
formation leaflets

Keywords: Diploma Thesis

Submission Date: 2022-02-22
Submission Contract: 0xe87F6011620DE19bAD5A4218d2ecDCEb353d4c90

License: CC BY-SA 4.0 - https://creativecommons.org/licenses/by-sa/4.0/legalcode

https://bise-student.io
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Tobias Dehling

Analysis, conceptual design and implementation

of a web-application providing patient-friendly

aggregation and refinement of information in

patient information leaflets

Diplomarbeit im Fach Wirtschaftsinformatik

Themensteller: Prof. Dr. Ali Sunyaev

Vorgelegt in der Diplomprüfung im Studiengang

Wirtschaftsinformatik der Wirtschafts- und

Sozialwissenschaftlichen Fakultät der Universität zu Köln

Köln 2012

II

Table of Contents

Index of Abbreviations..V

Illustration Index..VII

Index of Tables..VIII

1 Introduction..1

1.1 Problem and Objective..1

1.2 Methodology...2

1.3 Text Structure..3

2 Preliminary Draft..4

2.1 Derivation of Objectives...5

2.1.1 Information in Patient Information Leaflets..5

2.1.2 Features and Drawbacks of Patient Information Leaflets...............................6

2.1.3 Prospective Users..8

2.1.4 Data Security/Reliability Concerns...8

2.1.5 Convenience..10

2.2 The Preliminary Draft...11

2.2.1 GUI Prototype...12

2.2.2 GUI Prototype Design Decisions..14

3 Requirements..21

3.1 Interview Design and Execution...21

3.1.1 Software Requirements Specification...21

3.1.2 Interview Characteristics...23

3.1.3 Interview Design...25

3.1.4 Interview Execution and Processing...26

3.2 Elicited Requirements...28

3.2.1 Usability..29

3.2.2 Functionality..33

3.2.3 Software System Attributes...36

3.2.4 Concluding Remarks...37

3.3 Requirements Evaluation..38

3.3.1 Problematic Requirements..39

3.3.2 Elicited Requirements versus Objectives for Preliminary Draft...................40

III

4 Conceptual Design..42

4.1 Vaadin..42

4.2 Application Modules...45

4.3 Used Technologies..48

4.3.1 Tomcat...48

4.3.2 MySQL..48

4.3.3 Hibernate...49

4.4 Physical Infrastructure..49

4.5 Implementation Limitations..51

4.6 Conceptual Design versus Gathered Requirements..52

5 Implementation...53

5.1 Graphical User Interface...53

5.1.1 Reorganisation of Graphical User Interface Data Management...................53

5.1.2 Realisation of Requirements...56

5.2 Data Access...60

5.2.1 Making the Data Available..60

5.2.2 Database Mapping...65

5.2.3 Provided Functionality..66

5.2.4 Realisation of Requirements...69

5.2.5 Concluding Remarks...70

5.3 Additional Functionality...71

5.3.1 Pop-up for Selection of Pharmaceuticals..71

5.3.2 Detection of Adverse Drug Reactions...72

5.3.3 Listing of Side Effects...75

5.3.4 Display of Alternative Dosage Forms...75

5.3.5 Display of Pharmaceuticals with same Active Pharmaceutical Agents........76

5.3.6 Comparison of Pharmaceuticals..77

5.3.7 Printing Information on Pharmaceuticals..80

5.3.8 Explanation of Technical Terms..81

5.3.9 Further changes/additions...82

5.3.10 Realisation of Requirements...83

5.4 Concluding remarks..86

IV

6 Final Considerations and Remarks...87

6.1 Achievement of Objectives...87

6.2 Patient-Friendliness...89

6.3 Chosen Approach..89

6.4 Comparison with Similar Services..90

6.5 Further Research...93

6.5.1 Improvement of Data Quality...93

6.5.2 German Healthcare Telematics Infrastructure...94

6.5.3 Different Perspectives...95

Bibliography..96

7 Appendix...99

Appendix...99

Erklärung...152

Curriculum Vitae...153

V

Index of Abbreviations

ADR Adverse Drug Reaction

API Application Programming Interface

ATC Anatomical Therapeutic Chemical (classification system)

CPU Central Processing Unit

IEEE Institute of Electrical and Electronics Engineers

GUI Graphical User Interface

GWT Google Web Toolkit

HQL Hibernate Query Language

HTML HyperText Markup Language

HTTP(S) HyperText Transfer Protocol (Secure)

ICD International Classification of Diseases

ID Identification Key

JRE Java Runtime Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

LVS Linux Virtual Server

MVC Model View Controller

n.d. no date

n.p. no place

no. number

p. page

PDF Portable Document Format

publ. publisher

PZN Pharmazentralnummer

UI User Interface

UIDL User Interface Definition Language

VI

UML Unified Modelling Language

URL Uniform Resource Locator

SQL Structured Query Language

vol. volume

W3C World Wide Web Consortium

VII

Illustration Index

Fig. 1-1: Used development process..2

Fig. 2-1: Percentage of surveyed people that consider the risks to be serious..................9

Fig. 2-2: Screenshot of the GUI prototype..12

Fig. 2-3: Screenshot of the tab providing information on pharmaceuticals....................15

Fig. 3-1: Characteristics describing the group of interviewed people.............................27

Fig. 3-2: Grouping of requirements which were mentioned at least four times..............29

Fig. 4-1: General architecture of Vaadin..43

Fig. 4-2: Client- and server-side Vaadin architecture..44

Fig. 4-3: Application Modules and their relationships..46

Fig. 4-4: Network diagram of application...50

Fig. 5-1: Class diagram: MVC for component visibility...54

Fig. 5-2: Graphical User Interface: PanelToggler and ComponentSelectionWindow.....55

Fig. 5-3: Navigation section of the drug information tab..58

Fig. 5-4: Entity relationship diagram of used MySQL database.....................................62

Fig. 5-5: Advanced search tab...67

Fig. 5-6: Tables storing data on adverse drug reactions..73

Fig. 5-7: Tab for composing a set of pharmaceuticals...72

Fig. 5-8: Final GUI and drug information tab design..79

Fig. 6-1: Layout of GELBE LISTE PHARMINDEX...92

Fig. 7-1: Mapping of relevant requirements to objectives for preliminary draft...........108

Fig. 7-2: Complete and final entity relationship diagram of database model................146

VIII

Index of Tables

Tab. 2-1: Objectives implied by information in patient information leaflets....................6

Tab. 2-2: Objectives derived from patient information leaflets...8

Tab. 2-3: Objectives implied by prospective users..8

Tab. 2-4: Objectives implied by data security concerns..10

Tab. 2-5: Objectives related to convenience aspects...10

Tab. 2-6: Mapping of design characteristics to the objectives they are based on............20

Tab. 3-1: Requirements: 'Drug Information Tab' subgroup...30

Tab. 3-2: Requirements: 'Readability' subgroup..31

Tab. 3-3: Requirements: 'Intuitive Operation of Web Application' subgroup..................32

Tab. 3-4: Requirements: 'Comprehensibility' subgroup..33

Tab. 3-5: Requirements: 'Linking to Pharmaceuticals' subgroup....................................33

Tab. 3-6: Requirements: 'Search for Pharmaceuticals' subgroup....................................34

Tab. 3-7: Requirements: 'Additional Functionality' subgroup...35

Tab. 3-8: Requirements: 'Contact to Operating Authority' subgroup..............................35

Tab. 3-9: Requirements: 'User Accounts' subgroup...36

Tab. 3-10: Requirements: 'Software System Attributes' group..37

Tab. 5-1: Summary of realised requirements during GUI implementation.....................59

Tab. 5-2: Summary of requirements realised by module 'Data Access'...........................69

Tab. 5-3: Requirements abandoned during development of module 'Data Access'.........70

Tab. 5-4: Summary of requirements: additional functionality/associated adoptions......85

Tab. 7-1: List of objectives on which the preliminary draft is based..............................99

Tab. 7-2: Requirements mentioned most often during requirements elicitation...........107

1

1 Introduction

1.1 Problem and Objective

Patient information leaflets have poor readability and comprehensibility.1 Especially for

elderly patients, the font size is too small, the structure is not suitable to satisfactorily

retrieve desired information, the used language and words are not appropriate, and the

leaflets contain information that is irrelevant for the individual patient. These deficits

lead to undesirable consequences: Patients harm themselves through wrong use of

pharmaceuticals or get scared because of a lack of understanding, throw the

pharmaceuticals away and do not take them at all. A web application providing

pharmaceutical information could be more suitable for serving the required information

and offer additional services. In order to facilitate the design and development of a web

application providing aggregation and refinement of information in patient information

leaflets three research questions need to be answered:

1. What are the requirements of a web application providing aggregation and

refinement of information in patient information leaflets?

2. How can the information required for the web application be obtained and

displayed?

3. How can the web application be realised?

To the best of our knowledge no web application providing aggregation and refinement

of information in patient information leaflets for patients exists. Such a web application

would be beneficial since it could mend the insufficiencies of patient information

leaflets if it is well designed and implemented: In contrast to patient information

leaflets, web applications are not limited to a sheet of paper, can be easily updated, can

point the users to further information more comfortably, can be easily accessed prior to

purchase of the pharmaceutical, and can provide a customisable structure and interactive

content.

The aim of this thesis is to design and develop a prototype of the proposed web

application. Therefore, it is necessary to determine the requirements of the web

application, to provide and prepare the necessary data, to design the web application,

and to implement the prototype of the web application.

1 See regarding this and the following 3 sentences Nink, Schröder (2005), p. 13, 58-70.

2

1.2 Methodology

We decided to follow the waterfall model2 because the time and manpower restrictions

of this thesis do not allow for iterations in the development process, like repeated

customer contact to ensure compliance with user expectations. Moreover, we are

developing a prototype to demonstrate/evaluate the benefits of the proposed web

application which will be refined before/if it is put into live operation. Another fitting

problem characteristic is that we are developing a new system. Therefore, it is useful to

elicit and analyse requirements and to finish the design prior to implementation in order

to get a better vision of the application as well as to avoid unnecessary development

effort. Especially requirements elicitation and analysis will provide valuable input that

specifies the application and ensures that it conforms with user expectations. Figure 1-1

depicts the development process. The activities 'Integration and System Test' and 'Live

Operation and Maintenance' listed in Sommerville (2007)3 are replaced by the activity

'Evaluation' since we are developing a stand-alone prototype not intended for live

operation whose usefulness needs to be evaluated.

Initially, it4 is necessary to determine the requirements. In order to prevent that the

requirements get out of hand, at first, a preliminary draft of the web application will be

created. The preliminary draft will be based on objectives that will be determined by

examining different aspects of the proposed web application. Afterwards, prospective

2 See Sommerville (2007) p. 96-98 for a short description of the waterfall model.

3 See Sommerville (2007), p.96-98.

4 Adopted from Sommerville (2007), p. 97.

Fig. 1-1: Used development process4

3

users and stakeholders will be interviewed to derive further requirements based on the

preliminary draft. Subsequently, the requirements will be analysed and utilised to create

the conceptual design. In the following step, necessary data will be retrieved and

preprocessed and suitable technologies for implementation will be chosen. Finally, the

prototype of the web application will be implemented and its benefits evaluated.

1.3 Text Structure

The thesis is structured as follows: In the chapter '2 Preliminary Draft' different aspects

of the proposed web application are examined and objectives as well as a preliminary

draft are derived. In the following chapter '3 Requirements' the requirements are

determined, analysed, and evaluated. In the chapter '4 Conceptual Design' the

conceptual design is derived and illustrated. Chapter '5 Implementation' describes the

implementation and the realised web application. Finally, the thesis finishes with the

evaluation of the web application and the conclusion in chapter '6 Final Considerations

and Remarks'.

4

2 Preliminary Draft

Accurate and fitting requirements are crucial for successful development of software

since the requirements, their interpretation, and their utilisation shape the resulting

application. Additionally, reducing the effort put into requirements engineering

increases the risk of missing user expectations.5 Rupp (2002) differentiates six groups of

requirements elicitation techniques: creative techniques ('Kreativitätstechniken'),

monitoring techniques ('Beobachtungstechniken'), questioning techniques ('Befragungs-

techniken'), retrospective techniques ('Vergangenheitsorientierte Techniken'), feedback

techniques ('Feedback-Techniken'), and supporting techniques ('Unterstützende

Techniken'). Creative techniques are useful for deriving rough objectives. Therefore,

application of creative techniques is not necessary because in this case, as demonstrated

in the following chapter '2.1 Derivation of Objectives', sufficing objectives can be

determined by contemplation or be derived from literature. Monitoring techniques and

retrospective techniques require the existence of processes and applications that are

similar to those that are to be implemented. Since, to the best of our knowledge, no such

processes/applications already exist, monitoring techniques and retrospective techniques

are not appropriate either. As supporting techniques are usually used in combination

with other techniques, questioning techniques and feedback techniques are left for

requirement elicitation.

Repeated customer contact to gain feedback would be too much effort for the

development of the prototype. Therefore, we decided to initially devise a preliminary

draft on our own and present this to potential users in an interview to gain feedback and

additional requirements. An interview is an appropriate technique because consulting

only a few potential stakeholders/users suffices for the scope of this thesis, matches the

available resources, and allows for immediate enquiry by the interviewer. Along with

the provision of feedback, the preliminary draft has further advantages: Users get a

better idea of the web application that is to be developed, its possibilities, and its

limitations. Additionally, a better understanding and image of the application leads to

potentially more concise and reasonable requirements.

5 See regarding this and the following 3 sentences Rupp (2002), p. 92, 109-129.

5

2.1 Derivation of Objectives

To facilitate the creation of the preliminary draft and to establish a basic understanding

of the application to be developed, we will consider different aspects of the application

and derive objectives in the following.

2.1.1 Information in Patient Information Leaflets

The main objective of the web application is the aggregation and refinement of

information in patient information leaflets. Hence, we need to identify the information

that patient information leaflets have to provide:

 Information for identification of a pharmaceutical6

• Identifier

• Substance group, indication group, or mode of application

 Field of application

 Information to be considered before taking the pharmaceutical

• Contraindications

• Necessary precautions

• Possible adverse drug reactions

• Warning messages

 Taking instructions

• Dosage

• Mode of application

• Taking frequency

• Treatment duration

• Information regarding over- or underdosage

• Suggestion to contact pharmacist or physician in case of further questions

 Side effects and possible counteractive measures

6 See regarding this listing Bundestag/Bundesrat (1976), p. 16-18.

6

 Pointer to expiry date

• Warning to not take a pharmaceutical after expiry

• Information regarding storage

• Indications signalling spoilage

 Qualitative and quantitative listing of ingredients

 Available dosage forms and package sizes

 Name of pharmaceutical company

 Name of manufacturer or importer

 Date of last revision

The list above comprises the main information that needs to be provided for common

pharmaceuticals. Some explanations might be helpful: Substance group is the group to

which the active pharmaceutical agent, the substance responsible for the intended effect,

belongs. Indication group refers to the therapeutic application. Contraindications

mention situations in which the pharmaceutical should not be used. Adverse drug

reactions refer to negative effects that can occur if a pharmaceutical is taken in

combination with another pharmaceutical.

The required functionality to aggregate and refine information in patient information

leaflets implies a few objectives. Information that should be displayed needs to be

accessible by the application and requires an appropriate user interface. Capabilities for

aggregation and refinement of information need to be implemented and accessible in the

user interface as well.

Objective

1 Make relevant information in patient information leaflets available for the user.

2 Provide aggregation functionality for information in patient information leaflets.

3 Provide refinement functionality for information in patient information leaflets.

Tab. 2-1: Objectives implied by information in patient information leaflets

2.1.2 Features and Drawbacks of Patient Information Leaflets

Since the web application is an alternative information source to patient information

leaflets, it should offer applicable features of patient information leaflets and avoid

drawbacks of patient information leaflets. A survey by Nink and Schröder identified

7

three main troubles that patients have with patient information leaflets: content,

readability, and comprehensibility.7 Patients argue that the leaflets are too long and

provide too much irrelevant content. Readability is perceived as poor because of the

length and the confusing structure that impedes discovery of desired information. In

combination with the inadequate, formal language and the use of technical terms, the

deficits in content and readability are found to impair the comprehensibility.

Suggestions for improvement of patient information leaflets were captured in the survey

as well. Only important, generally understandable information should be provided in the

patient information leaflet. However, different patients desire different information. One

interviewee, for example, regarded the active pharmaceutical agent as unimportant

information, whereas, another interviewee wished for further information regarding the

active pharmaceutical agent. Readability could be improved by a larger font size and a

well-arranged layout, which eases the discovery of desired information and bundles

related information. In order to avoid the drawbacks of patient information leaflets and

to incorporate the suggestions for improvement, the user should be able to select the

information to be displayed, the layout should be well-arranged, the interface should be

zoomable, and technical terms should be replaced or at least explained.

Recommendations for the design of patient information leaflets to improve readability

are provided by the European Commission as well.8 Different font sizes should be used

to stress key information and the font should be easy to read. Contrast between text and

background colour should be sufficient and the text alignment 'justified' should not be

used so that the text is easy to read. Headings are deemed important for navigation and

should be in a bold type face or accentuated with a different colour. However, headings

of the same level should have the same design. To avoid confusing the readers, simple

words of few syllables and short sentences should be used. Abbreviations, acronyms,

and scientific symbols should be avoided whenever possible, otherwise, they should be

explained. Some of the recommendations are also mentioned in the survey of Nink and

Schröder. New recommendations that should be kept in mind for the design of the web

application are the contrast between text and background colour and the formatting of

the headings.

7 See regarding this and the following 8 sentences Nink, Schröder (2005), p. 58, 61-75.

8 See regarding this and the following 6 sentences European Commission (2009), p. 7-11.

8

Objective

4 Offer functionality for the selection of the displayed information.

5 Structure the layout according to user wishes and needs.

6 Improve structuring with accentuated and consistent formatting of headings.

7 Provide zoom capabilities or a sufficient font size.

8 Avoid or explain technical terms or notations.

9 Obtain readability with clear contrast between text and background colour.

Tab. 2-2: Objectives derived from patient information leaflets

2.1.3 Prospective Users

Intended users of the web application are persons who want to get information

regarding pharmaceuticals licensed in Germany. Indicators like age, education, or

profession do not restrict the user group, hence, user web application operating

proficiency ranges from low to high. Accordingly, the application has to provide

assistance for inexperienced users but should not bother or slow down experienced

users. Assistance can be provided through features like tooltips, instructions, a

configurable interface, or different views. A configurable interface avoids scaring off

users with too much information by displaying only basic, aggregated information for

basic users and offering additional, detailed information when demanded by more

proficient users. Different views are preconfigured interfaces that support the user in a

similar way to a configurable interface.

Objective

10 Provide assistance for inexperienced users.

11 Avoid hindering or slowing down experienced users.

Tab. 2-3: Objectives implied by prospective users

2.1.4 Data Security/Reliability Concerns

Figure 2-1 represents results of a representative survey of the German population and

shows that data security considerations should not be neglected in a software

development project. About half of the surveyed people deem data security related risks

like abuse of personal data or online fraud as serious risks. This means, that these risks

are considered by more people as serious than risks like terrorism, acts of violence, or

seriously contagious diseases. Additionally, the group of surveyed people is a

9

representative subset of

prospective users, which are

all people mature enough to

deal with pharmaceuticals,

because the group of

surveyed people is9 a

representative subset of the

German population older

than 16. Obviously, data

security concerns need to be

considered in the develop-

ment process if 50% of

prospective users see it as a

serious risk. Fortunately, the

main purpose of the

proposed web application is

the provision and not the

collection of information.

Accordingly, collection and

especially storage of add-

itional sensitive data, e.g.

data about user behaviour,

should be avoided because

it is not necessary for the

main purpose and collecting

less data reduces the effort

necessary for data protection. Data that needs to be collected is data representing the

information in patient information leaflets. It is important that the data is correct and

reliable to avoid misinformation of patients, which could lead, at the worst, to serious

repercussions like death, if, for example, wrong dosages are listed or contraindications

are omitted. To provide correct and reliable information, it is important to use only

trustworthy sources of information, to prevent tampering with data, and to provide a

9 Adopted from Deutsche Telekom (2011), p. 15.

Fig. 2-1: Percentage of surveyed people that consider the risks (listed

on the right) to be serious9

Unemployment

Loss of earnings

Life-threatening diseases

Inflation

Abuse of personal data (like unau-
thorised utilisation of personal data)

Food contamination

Online fraud (like unauthorised
access to banking account)

Radioactive contamination (for ex-
ample through accident in power plant)

Debit card fraud
(skimming)

Acts of violence
(e.g. assault, robbery)

Terrorism

Computer viruses

Seriously contagious diseases
(e.g. avian flue, EHEC)

Natural disaster

Burglary, breaking and entering, …

Traffic accident

War and warlike events
Germany is involved in

Governmental surveillance

62%

57%

57%

54%

52%

52%

50%

39%

37%

37%

36%

35%

33%

29%

28%

24%

23%

22%

10

mechanism to flag potentially wrong information. Furthermore, the user should be

informed about the data sources and potential risks so that he can decide on his own

whether he finds the information trustworthy or not.

Objective

12 Do not collect and store data that is not relevant for the display of information in
patient information leaflets.

13 Use only trustworthy sources of information.

14 Protect data against tampering.

15 Provide a mechanism to report potentially wrong information.

16 Inform users about data sources and potential risks associated with the
application.

Tab. 2-4: Objectives implied by data security concerns

2.1.5 Convenience

A web application providing information about pharmaceuticals needs to be accessible

around the clock so that users can retrieve information when they need to. Additionally,

response times need to be short, almost unnoticeable, in order to provide the required

information in a convenient way and as fast as possible. This requires a scalable

architecture because in productive use many users might use the web application

concurrently. It should be possible to easily increase performance of the web application

by running it in more threads on one or multiple machines. Performance will not be a

problem for the prototype, which will have only a few users, but scalability should be

kept in mind and easily be realisable. Additional functionality, like for example

provision of information regarding price developments or suppliers of pharmaceuticals,

might be useful. Therefore, it is necessary that the architecture is expandable as well so

that additional features can be easily implemented later on.

Objective

17 The web application needs to be accessible around the clock.

18 Response times should be short (almost unnoticeable).

19 The architecture needs to be scalable.

20 The architecture needs to be expandable.

Tab. 2-5: Objectives related to convenience aspects

11

2.2 The Preliminary Draft

As mentioned above, the main purpose of the preliminary draft is to give users to be

interviewed a better idea of the web application, its limitations, and its possibilities in

order to improve conciseness and quality of the requirements to be elicited. Hence, we

developed a prototype for the graphical user interface (GUI), which is more suitable to

convey the look and feel of the intended web application than alternatives like textual

description or unified modelling language (UML) diagrams. The prototype can be

classified as an exploratory, presentational prototype10 that is executable and

demonstrates a possible, fully functional graphical user interface, but lacks further

functionality not associated with the presentation layer, like provision of actual

information about pharmaceuticals. Purpose of the prototype is mainly the

communication of a clear picture of the preliminary draft for the web application. In

contrast to envisioning the application based on text or diagrams, a GUI prototype

enables the user to interact with an actual application and provides a clear foundation

for requirement elicitation. Another advantage is that room for misinterpretation is

reduced since interviewer and interviewee can relate their statements to or clarify them

based on the GUI prototype. With text or diagrams describing the application,

misunderstandings are more likely because of more room for interpretation and a greater

distance to the intended product.

A survey of nine major industrial projects by Bäumer et al. supports the utilisation of

prototypes as well.11 Results of the survey are that prototypes support communication

between developers and end users and are suitable for development and communication

of a vision of the intended application. A further finding was a tendency for throwaway

prototypes that are implemented as quickly and cheaply as possible and are not

implemented well enough to be reused. Nevertheless, implementing the prototype with

the same technologies as the final product and using a modular architecture improves

the likelihood to be able to reuse the prototype or at least parts of it, which would reduce

the implementation effort. Additionally, modules can be easily adopted, expanded or

added if necessary.

10 See Bäumer et al. (1996), p. 532-533.

11 See regarding this and the following 2 sentences Bäumer et al. (1996), p. 535-537.

12

2.2.1 GUI Prototype

We decided to use the Vaadin12 Framework, a Java13 framework for the development of

web-based user interfaces, for the development of the GUI prototype. Vaadin hides web

technologies like HTML14, JavaScript15 or AJAX16 from the developer so that the user

interface can be implemented by writing Java classes. Developing with Vaadin leads to

a thin-client architecture, where everything except the display of the user interface and

the capture of user interaction is handled on the server side. Since the application logic

is hidden from the client side security is increased. Additionally, executing the

application logic mainly on the server side eases integration of further components, like

the database providing information on pharmaceuticals, because the integration affects

only the server side. Rendering of the user interface on the client side is handled by an

abstraction tier that ensures compatibility with common browsers and requires only

interaction with the abstraction tier from the developers, which relieves them of effort

12 See 'https://vaadin.com/home' for more information on Vaadin.

13 See 'http://java.com/en/about' for more information on Java.

14 See 'http://dev.w3.org/html5/spec/spec.html' for information on HTML.

15 See 'https://developer.mozilla.org/en/A_re-introduction_to_JavaScript' for information on JavaScript.

16 See 'http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications' for information on
AJAX.

Fig. 2-2: Screenshot of the GUI prototype

13

for managing the client side like handling browser compatibility issues. Therefore,

developers can compose the user interface by adding, adopting, and expanding widgets17

provided by the framework. The Vaadin framework will be described in more detail

later on in the chapter '4.1 Vaadin'.

Figure 2-2 depicts the user interface18 structure of the GUI prototype. The user interface

is separated into four main components:

 The 'Header' on the top, which displays the name of the application and provides

check boxes to switch the displayed sub-panels off or on.

 The 'SearchBar' on the left with the two sub-panels 'Medikamenten-Auswahl'

and 'Zusatz-Funktionen'.

• The panel 'Medikamenten-Auswahl' is used to search for pharmaceuticals for

which information should be displayed. Pharmaceuticals can be selected

directly in the list-select, searched by name in the textbox below the list-

select, or an advanced search mask can be opened by clicking on the button

'Erweitert'. The advanced search mask can be used to search for

pharmaceuticals by name, PZN19, ATC20 code, ICD21 code, field of

application or active pharmaceutical agent.

• The panel 'Zusatz-Funktionen' provides functionality beyond the search for

pharmaceuticals. Functionality like closing all open tabs, turning creation of

new tabs on or off, or displaying help or about information. Additional

functionality like an adverse drug reaction tool or price comparison tool for

pharmaceuticals could be made accessible via this panel.

17 Widgets are GUI modules, like buttons, text boxes, or lists, that can be combined to create the user
interface.

18 The user interface is in German because the web application should provide information on German
pharmaceuticals whose users are more likely to speak German than English.

19 PZN refers to Pharmazentralnummer, which is a German unique identifier for pharmaceuticals. The
PZN has to be printed on the packaging of every German pharmaceutical.

20 ATC refers to the Anatomical Therapeutic Chemical classification system. An ATC code identifies a
pharmaceutical based on the anatomical application area, its therapeutic characteristics, and its
chemical characteristics. Accordingly, two pharmaceuticals from different brands can have the same
ATC code, if they have the same anatomical application area, therapeutic characteristics, and chemical
characteristics.

21 ICD refers to the International Classification of Diseases. ICD codes identify diseases and can be used
in the proposed web application to search for pharmaceuticals associated with a particular disease or a
group of diseases.

14

 The 'SettingsBar' on the right with the two sub-panels 'Detail-Level' and

'Details'.

• The panel 'Detail-Level' is used to set levels of detail for the displayed

information on pharmaceuticals. With a higher level of detail more

information on pharmaceuticals will be displayed and with a lower level of

detail less information on pharmaceuticals will be displayed.

• The panel 'Details' contains check boxes for all categories of details, like

general information, contraindications, field of application, et cetera. By

checking or unchecking the check boxes the user can decide in detail which

information should be displayed. If a check box is checked the associated

information will be displayed and if a check box is unchecked the associated

information will not be displayed. The levels of detail that can be set in the

panel 'Detail-Level' are actually presets for settings of the check boxes.

 The 'TabSheet' in the centre of the application. The 'TabSheet' can hold tabs for

search masks, search results, information on pharmaceuticals, and all other

responses on user interaction that can not be handled by the other main

components. In the panel 'Zusatz-Funktionen' the user can toggle whether new

tabs should replace the current tab or be displayed as an additional tab.

2.2.2 GUI Prototype Design Decisions

Purpose of this chapter is to validate that the GUI prototype fulfils the objectives

derived in chapter '2.1 Derivation of Objectives' by linking the objectives to design

characteristics. As stated in objective 1, the application needs to make the relevant

information provided by patient information leaflets available to the user. Provision of

the required information is realised with a tab that can display the information for a

selected pharmaceutical. Based on a literature review, Nink and Schröder developed a

structuring for patient information leaflets that incorporates wishes and needs of

patients.22 They recommend to group information that is associated with regard to

content. The groupings have a common question as heading that characterises the

information provided. In accordance with objective 5, we adopted the proposed

structuring in order to organise the information based on wishes and needs of users and

to provide the relevant information listed in chapter '2.1.1 Information in Patient

22 See regarding this and the following 2 sentences Nink, Schröder (2005), p. 88-90.

15

Information Leaflets'. Information on pharmaceutical company and manufacturer or

importer is omitted because multiple surveys of patients or specialists observed that this

information is deemed unimportant23. Moreover, the user can, as demanded by objective

4, decide which information should be displayed by toggling check boxes in the 'Details'

panel or selecting presets in the 'Detail-Level' panel. As illustrated in figure 2-2 and

figure 2-3, the check boxes in the 'Header', which enable the user to hide not needed

panels, generate further configuration potential. In figure 2-2 all panels are enabled and

in figure 2-3 only the 'Details' panel is active.

Figure 2-3 is a screenshot of the tab that provides the information on pharmaceuticals.

In the screenshot a custom set of information is selected so that only general

information on the pharmaceutical, the ingredients and the dosage are given.

Additionally, the screenshot illustrates that, in compliance with objectives 6 and 9, the

headers are accentuated and consistently formatted and the contrast between text and

23 See Nink, Schröder (2005), p. 57-58, Fuchs, Hippius, Schaefer (2003), p. 303-304, and Fuchs et al.
(2007), p. 168-169.

Fig. 2-3: Screenshot of the tab providing information on pharmaceuticals

16

background colour is sufficient. Objective 10 advocates support for inexperienced users,

which is supplied by multiple features. Tooltips offering assistance are implemented for

every component and can be raised by hovering over the component with the cursor.

Figure 2-3 depicts a tooltip explaining contraindications in a short sentence and a link to

Wikipedia for further information. In addition, a help tab that presents general usage

information and detailed guidance concerning single page components can be accessed

via the panel 'Zusatz-Funktionen'. Further assistance is given through the simple access

to the web application because no installation or other preparatory effort is required,

instead, the user just needs a current browser supporting JavaScript. To take objective

11 into account, we considered potential needs of experienced users as well.

Information can be accessed with a few clicks or key-strokes, tooltips can be easily

ignored, the web application does not perform unrequested actions, the advanced search

accepts more specific search keys, like PZN or ATC code, and information that might

not be relevant for the common user, like the ingredients, can be displayed. Since

common browsers like Firefox, Opera, Chrome or Internet Explorer already provide

sophisticated zoom capabilities, which are mentioned in objective 7, we advise the user

to use the zoom functionality of the browser instead of implementing application-

specific zoom capabilities. To avoid complications while zooming, the GUI components

are configured to provide scrollbars when necessary and not to overlap as long as

enough space is available.

Objectives 17 and 19 require scalability and high availability of the web application.

Vaadin applications can be deployed as servlets24, therefore, the scalability and

accessibility objectives can be easily achieved by running the servlet in a cluster of

Tomcat application servers, which manages load balancing and failover25. Load

balancing refers to assigning pending work to servers as efficiently as possible and

failover refers to re-routing unfinished work from crashed servers. Up until now, the

GUI prototype displays only exemplary data so that no database access is required.

However, the web application should provide useful information and requires access to

a database. Hence, the database needs to be available around the clock as well as

scalable because the web application cannot provide information without a working

database and scaling up the performance of the Tomcat cluster increases the required

24 Servlets are web components that can be run on compatible web servers and provide dynamic content.
Vaadin currently supports Servlet 2.3. See JSR 154 for more information
(http://download.oracle.com/otndocs/jcp/7840-servlet-2.3-spec-oth-JSpec)

25 See Apache Software Foundation (n.d.), p. 1-4.

17

performance of the database. Scalability and high availability of the database could be

realised by, for example, using a MySQL database with replication in a master-slave

setting26 in combination with Linux Virtual Server (LVS) for load balancing and failover

management27. With the utilisation of a Tomcat cluster and MySQL replication in

combination with LVS increasing performance demands should be manageable.

Vaadin development is based on Java and Java is object-oriented so that objective 20

can be easily handled: The architecture is expandable because the modular structure

induced by object-orientation facilitates modification and addition of classes – the

actions required for provision of additional functionality. Further functionality can be

added to classes without affecting other classes, further objects of existing or new

classes can be integrated, and inheritance eases the introduction of further, more

specialised objects. The GUI prototype generally shows subsecond response times,

which are addressed in objective 18. However, database queries, which will be

necessary later on, will increase response times and it is already possible to create slow

response times in some browsers by requesting repainting of many objects at once. In

order to display the application the client has to render JavaScript, which takes some

time. We kept the GUI simple and the amount of necessary objects at a minimum to

reduce the amount of JavaScript that needs to be rendered, but we will have to wait for a

complete version and user feedback to determine satisfaction with response times. If the

users are satisfied with the response times of the application it would be a waste of

effort to try to reduce them even further. By writing well performing code, considering

SQL performance, keeping the necessary rendering of JavaScript in mind, and

leveraging scalability to provide sufficient computing power on the server side,

response times should be manageable.

In conformance with objectives 12 and 14, intended data collection is restricted on data

that is provided by patient information leaflets and the server-oriented architecture of

Vaadin prevents data tampering. Since the user does not need direct access to the

database, the database can be connected via a private network, which makes it harder

for an attacker to access the database. Additionally, the application requires only read

access to the database so that accounts used by the application are not able to tamper

with data. However, user inputs need to be checked for SQL injections28 so that a user

cannot gain access to the database by running unintended SQL queries. Complying with

26 See Oracle (2011), p. 1423-1431.

27 See Zhang (2000), p. 1.

18

objective 13, only sources that are deemed trustworthy by general opinion will be used.

As advised by objective 16, an info-tab displayed at application startup describes the

sources of information, indicates that users should decide on their own whether they

trust the information, and informs users that they can use the information only at their

own risk.

Avoiding or explaining technical terms to obey objective 8 is problematic. In the user

interface itself we use only common expressions, explain them in tooltips, and link to

further information, but improving the information provided by the database is complex.

As basic source of information, we intend to use GELBE LISTE PHARMINDEX29,

which primarily targets medical professionals. The orientation on medical professionals

leads to an excessive use of abbreviations and technical terms which deteriorate

comprehensibility. These abbreviations and technical terms cannot be easily replaced

because their meaning depends on context and is sometimes ambiguous. We will

address this problem later on when we have analysed the requirements and have a more

precise idea of the web application so that we can better evaluate alternatives for

improving the data or accessing other sources of information. Objective 15, provision of

report functionality for potentially wrong information, requires further information and

decisions as well. In the GUI prototype we display just a message that users should

report wrong information by mail when they click on the associated button. With a

further developed design it should be possible to support objective 15 with more

sophisticated functionality that still fits the rest of the application. Inadequate decisions

would be, for example, requiring a user administration for the reporting of wrong

information, if it is not necessary for any other functionality or providing elaborate

functionality to report wrong information if information is unlikely to be wrong because

of other arrangements.

The primary feature of the web application is the provision of aggregation and

refinement functionality for information in patient information leaflets, which are listed

in objectives 2 and 3. This functionality should support users and satisfy needs of users

so that it will be determined during the interviews for requirement elicitation. In the

GUI prototype only some basic aggregation and refinement functionality is

implemented: Users can select which information should be displayed, users can look

28 SQL injection refers to SQL code that is given as application input by a malicious user, executed by
the application, and intended to gain access to the database or tamper with the data.

29 See 'http://www.gelbe-liste.de' for further information.

19

pharmaceuticals up by specific properties like ATC code, terminology like

contraindications, side effects, and so on are explained, and links to further information

are provided.

Table 2-6 summarises the objectives and associated design decision. With the exception

of a few objectives that have to be dealt with later on, the GUI prototype honours the

objectives and should represent an acceptable preliminary draft of the web application.

Category # Objective Design

Data

1 Provide information on
pharmaceuticals

Tab providing information on
pharmaceuticals

12 No unnecessary data
collection

No unnecessary data collection

13 Trustworthy sources of
information

Utilisation of sources that are deemed
trustworthy in general opinion

14 Data tampering
Server-oriented architecture, only read
access for application, connection via
private network

16 User information: risks and
data sources

Info tab

Interface
Design

Principles

5 Structure of layout
Groupings of associated information,
questions easily convey information
provided in groupings

6 Formatting of headings Consistent formatting of headings

8 Technical terms
Avoidance and explanation in GUI,
improvement of data in database will
be considered later on

9 Contrast and readability Black font on fair background colour

10 Inexperienced users

Tooltips, tab providing help
information, links to further
information, easy application access
with a browser

11 Experienced users

Low amount of clicks/key-strokes, help
information can be easily ignored,
specific search keys, display of detailed
information

20

Category # Objective Design

Functionality

2 Aggregation of information

Selection of displayed information,
lookup by specific characteristics,
requirements elicitation will determine
more

3 Refinement of information
Explanations, links to further
information, requirements elicitation
will determine more

4 Selection of displayed
information

Check boxes to select displayed
information, check boxes to toggle
displayed GUI components

7 Zoom capabilities
Hint to use zoom capabilities of
browser

15 Wrong information
Report by mail, will be further
considered later on

Application
Design

17 Accessibility Clustering, failover

18 Response times
Simple interface, well performing code
and SQL, scalability

19 Scalability Clustering, load balancing

20 Expandability Object orientation

Tab. 2-6: Mapping of design characteristics to the objectives they are based on. (Objectives are mentioned

in key words. See Tab. 7-1 in the appendix or chapter '2.1 Derivation of Objectives' for a detailed listing

of the objectives.)

21

3 Requirements

The requirements engineering process is comprised of three steps. At first we will elicit

the requirements with interviews. After interview analysis, we will analyse the gathered

requirements by formulating them, writing them down, sorting, grouping and deciding

which should be realised. Afterwards we will validate the requirements by checking

whether they adhere to the characteristics of good requirements described below in

chapter '3.1.1 Software Requirements Specification'.

3.1 Interview Design and Execution

At first, we determined aspects of good requirements as well as important interview

characteristics to improve the interview design and execution and to enhance the quality

of the gathered requirements. In the following, we will describe these aspects of

interview preparation in addition to the actual design and execution of the interview.

3.1.1 Software Requirements Specification

With IEEE (1998) the Institute of Electrical and Electronics Engineers (IEEE) presents

a recommended practice for the composition of software requirements specifications.

Although we are not going to create a dedicated requirements specification document,

IEEE (1998) contains useful information for the compilation of requirements. A

dedicated software requirements specification is not necessary because the thesis itself

describes the relevant requirements. Additionally, a novel proof of concept prototype of

a web application is to be developed so that we do not need a software requirements

specification to serve as a binding contract with a client. Our motive for requirement

engineering is to determine user expectations and wishes to increase user acceptance

and patient-friendliness. In the following, we will, on the basis of IEEE (1998), specify

aspects that need to be considered during requirements engineering for the scope of this

thesis.

The gathered requirements should address the aspects user interface, functions, and

software system attributes.30 The user interface (in web applications the part of the

application displayed in the browser) is the part of the application visible to the user,

30 See regarding this and the following 5 sentences IEEE (1998), p. 15-18.

22

therefore, the user interface should especially meet user expectations. Functions refer to

features that should be provided by the web application. In our case, we do not need

requirements for subordinate functions that are transparent to the user like database

connections. However, we need requirements for desired top-level functionality to

improve user satisfaction, like detection of possible adverse drug reactions. Software

system attributes are attributes like reliability, availability and security. These attributes

should illustrate user expectations. Users, for example, probably expect the web

application to be accessible when they need information and do not want the application

to abuse their provided input.

A requirement is “a condition or capability needed by a user to solve a problem or

achieve an objective”31. Hence, requirements should not specify design or implemen-

tation details and should not restrict the software in other ways.32 The gathered

requirements should be correct and unambiguous, i.e., specify a condition or capability

that is actually needed and allows for only one interpretation. In addition, requirements

need to be complete so that they provide all necessary information. Requirements

should be consistent so that they do not contradict specified properties of real-world

objects, do not contradict each other, and do not refer to the same real-world object with

different terms. For example, a requirement specifying that a table titled

contraindications should list possible negative effects during treatment with a

pharmaceutical would not be consistent because it contradicts properties of a real-world

object. A contraindication, the real-world object, is actually a situation where the

pharmaceutical should not be used for treatment, e.g., a patient who is allergic to the

pharmaceutical. Additionally, requirements should be verifiable; it must be possible to

decide whether a requirement has been met or not. A requirement stating to provide as

much information on pharmaceuticals as possible would be unverifiable because it is

always possible to research more information. Requirement statements should be

tangible and quantifiable to ensure verifiability, like a requirement demanding to list all

contraindications listed in the respective patient information leaflet. Furthermore,

requirements need to be traceable, that is having a clear source and enabling

referencing. Thus, requirements need a unique identifier so that it is possible to link

requirements with each other and decisions/further developments based on it.

31 IEEE (2010), p. 301.

32 See regarding this and the following 10 sentences IEEE (1998), p. 4-7.

23

3.1.2 Interview Characteristics

As determined above, we will use interviews for requirement elicitation. This decision

is reaffirmed by Davis et al. (2006), which is a systematic review of empirical studies

on the effectiveness of elicitation techniques. This review led to the result that

“interviews, preferentially structured, appear to be one of the most effective elicitation

techniques in a wide range of domains and situations”33. Another interesting finding is

that prototypes seem to prevent gathering of information that cannot be associated with

the prototype itself because attention of the user is focused on the prototype.34

Nevertheless, we will use the GUI prototype developed in chapter '2 Preliminary Draft'

to leverage its ability for gathering feedback. In order to avoid preventing information

from being gathered, we will not present the GUI prototype in the interview until we

have covered general questions about ideas, wishes, and expectations concerning the

web application to be developed.

Interviews can be classified in a range from structured to unstructured35. In structured

interviews a set of predetermined questions is employed. Semi-structured interviews

allow for more flexibility and adoption to the course of interview. In semi-structured

interviews the interviewer has still a set of predetermined questions, but he can rephrase

them, choose between them or introduce further questions. Unstructured interviews

need no envisioned course of action. After a short introduction, interviewer and

interviewee see where the interview takes them. Thus, we will conduct semi-structured

interviews because we want to elicit new requirements, for which it might not be

possible to predetermine suitable questions, but we still want to stay on a topic

concerning requirements and investigate specific subjects.

To improve interview effectiveness, we will utilise the personal and reported experi-

ences from various interviews outlined in Hove, Anda (2005). Hove and Anda identified

four crucial areas of concern for interview design: effort necessary for the interview,

interviewer skills, interview tools, and interaction with the interviewee.36 Besides the

conduction of the interview, necessary effort for scheduling, collection of background

information, preparation of interview guides, and analysis need to be considered. In

33 Davis et al. (2006), p. 185.

34 See Davis et al. (2006). p. 184.

35 See regarding this and the following 5 sentences Cohene, Easterbrook (2005), p. 96-97.

36 See regarding this paragraph Hove, Anda (2005), p. 23-31.

24

addition to software requirements engineering skills, interviewers need to leverage

interviewing skills. To gain trust, interviewees should be assured of confidentiality and

anonymity, the purpose of the interview should be explained, and permission for audio

recording should be requested. The interviewers should pay attention, let the

interviewee talk, express themselves clearly and be courteous, non-judgemental,

sensitive, gentle, and well prepared. An audio recorder is a common, useful tool for an

interview. If interviewees agree to recording of the interview, the interviewer needs to

focus less on taking notes and can pay more attention to the actual conversation.

Moreover, interviewers can refer to the actual statements said during interview analysis,

are less dependent on their notes and memory, and omission of details is less likely.

Visual aids were experienced to be a useful tool too. Visual aids make it easier to ask

follow-up questions related to them and interviewees might provide more rich and

enlightening information. These findings coincide with our reasoning for the

employment of the GUI prototype (preliminary draft), which is a form of visual aid.

Interaction with the interviewee is susceptible to a few problems. If the interviewee is

uncommunicative it is useful to rephrase questions so that they cannot be answered with

'yes' or 'no'. To raise confidence of interviewees, they should be ensured that there are

no right or wrong answers. Shy interviewees might be motivated to talk by warming

them up with topics they are interested in or letting them explain issues to the

interviewer. Interviewees that talk to much and get off topic, on the other hand, should

be gently directed back to topic. By either giving them cues like stopping to take notes

or interjecting new questions when they pause, or by interrupting them if nothing else

works.

Another influence on interaction with interviewees are the interview questions.37

Questions related to behaviour or experience, where interviewees should describe how

they do something, often lead to rich information. Reflexive questions that address

opinions or values of interviewees by dealing with past experiences are likely to lead to

useful information as well. Further helpful suggestions are that questions should not be

too detailed because detailed questions can be difficult to answer and that questions

should not assume conditions because if the assumption is not true, the question and

follow-up questions are nearly useless. In Cohene, Easterbrook (2005) the successful

application of two additional useful interview tactics is described. Hypothetical

37 See regarding this and the following 3 sentences Hove, Anda (2005), p. 29-30.

25

experience questions are based on a fictional scenario.38 A scenario provides context and

creates shared meaning so that interviewees better understand the intention of the

question and can be steered in the right direction which enables them to provide more

valuable information. Additionally, hypothetical experience questions tend to reduce

personal biasses because the interviewee can answer the question from the perspective

of the hypothetical user in the scenario which reduces possible pressures to please the

interviewer or to not offend him. Another tactic is protocol analysis that overcomes

enunciative difficulties. Instead of being asked to describe how they would do

something, interviewees are asked to show interviewers how they do it. This tactic can

be useful to discover usability difficulties of the GUI prototype.

3.1.3 Interview Design

We developed the interview based on the recommendations, experiences, and

characteristics described in chapters '3.1.1 Software Requirements Specification' and

'3.1.2 Interview Characteristics'. The interview is divided into five sections. At first, the

interview is initiated with introductory remarks that include introducing the interviewer,

asking for permission to record the interview, describing the web application and the

purpose of the interview, and gathering some general information on interviewees to be

able to characterise the group of interviewees later on. The second section addresses the

imagination of interviewees and is intended to elicit requirements without bias from

familiarity with the GUI prototype. Interviewees are asked about their utilisation of

package information leaflets and about inconveniences they associate with package

information leaflets. Then, they are asked to describe how they picture the application

based on the explanations in the first section and how they expect the application to

facilitate the provision of information in patient information leaflets. In the third

section, the GUI prototype is introduced and interviewees are asked to familiarise

themselves with the GUI prototype. Simultaneously, the interviewer offers assistance

and monitors the behaviour of the interviewees to identify problems. Hesitant

interviewees are asked to perform simple tasks or to explain to the interviewer how they

would accomplish a task in order to motivate them to become acquainted with the

application.

38 See regarding this and the following 4 sentences Cohene, Easterbrook (2005), p. 99-102.

26

Afterwards, in the fourth section, interviewees are asked to compare the GUI prototype

to the expectations they had before they knew the GUI prototype and to elaborate on

differences and characteristics they missed or would prefer to be different. In order to

identify aspects of the prototype the interviewees do not like but did not mention before,

a scenario that introduces a hypothetical patient that prefers using patient information

leaflets over using the web application is provided. Based on this scenario, interviewees

are asked for the most likely reasons of the hypothetical patient to prefer patient

information leaflets over the web application. Then, ideas how the reasons for preferring

patient information leaflets could be nullified are elicited. In the following, interviewees

are asked whether they can think of further functionality that could be useful and to

mention further useful functionality they know from other applications. Subsequently,

interviewees are prompted for useful functionality concerning aggregation and

refinement of information in patient information leaflets. Finally, interviewees are

confronted with questions about quality aspects like reliability of the provided

information and performance, availability and usability of the system. The fifth and

final section is used for further questions, ideas, comments, and feedback that were not

mentioned previously. Additionally, before concluding remarks from the interviewer

interviewees are asked whether they would use the final fully implemented version of

the application.

3.1.4 Interview Execution and Processing

We interviewed twelve people in eleven interviews. Elicited characteristics describing

the group of interviewed people are plotted in figure 3-1. Interviewees can be classed in

two age groups. The first group consists of people that are 45 to 50 years old and knew

a world without the internet. Interviewees from age 20 to 23, which grew up with the

internet, constitute the second group. This is useful to broaden different interviewee

attitudes towards and experiences with the internet. In order to avoid gender-specific

bias we interviewed an equal number of female and male interviewees. In general,

interviewees had a positive attitude towards internet utilisation so that they prefer to use

services provided over the internet. However, two interviewees stated that they use

internet applications only reluctantly, which leads to another perspective on the

application. The application to be developed is mainly influenced by the two disciplines

'Information Technology' and 'Health Care'. Besides being a potential user of the

application, some interviewees had an occupational background in one of the disciplines

27

which provides potential to elicit more specific requirements or requirements that an

interviewee without such expert knowledge would not think of. Interviewing more

people would lead to more information and improve the results but for the development

of the prototype the group of interviewees is diverse, adequate and large enough to

provide sufficient applicable and feasible requirements.

Interviewees were asked questions based on the structure mentioned in chapter '3.1.3

Interview Design'. However, the question sequence was often spontaneously adjusted

because interviewees addressed subjects that were initially scheduled for a later phase of

the interview. During the interview, an interview guide was used to support the

interviewer. Its purpose was to depict the general structure of the interview and to

suggest exemplary questions that could be rephrased to adapt to the needs of the

interviewees. Additionally, an audio recorder was used to tape the interviews so that the

interviewer could focus on the interview instead of taking notes. Notes were just made

to capture ideas, remarks, requirements, or problems for later reference in the course of

the interview and to capture relevant observations that would not be reflected on the

tape. Besides higher focus on the interview, recording turned out to ease processing of

the interviews because everything said could be replayed and interview processing

depended less on recollection.

Fig. 3-1: Characteristics describing the group of interviewed people.

28

The interviews were processed by listening to the individual recordings and writing

down the mentioned ideas and requirements for the web application. Thereby, similar

ideas or requirements were directly consolidated. This led to one document for every

interview listing the rudimentary requirements. We call these requirements rudimentary

because by definition39 they might not be exactly requirements and they are just loosely

formulated. Each requirement is assigned a unique ID40 and is further described in a

description and a comment section. The description section describes the requirement

and clarifies uncertainties, and the comment section lists comments of the interviewees

like personal views or implementation suggestions. In the following, the rudimentary

requirements were further refined and consolidated by merging similar requirements,

improving their formulation, adding missing descriptions, and listing and grouping them

in a single document that contains the final requirements. Moreover, a sources section

that lists the IDs41 of the rudimentary requirements on which a final requirement is

based was added to the final requirements. As well as the rudimentary requirements the

final requirements were assigned a unique ID42.

3.2 Elicited Requirements

Since the objective of this thesis is the development of a prototype, requirements do not

need to be handled very strictly. In the scope of this thesis requirements are rather ideas

and features that would be beneficial for users than conditions/capabilities that the

software has to fulfil/provide. Therefore, requirement formulations do not have to be

very accurate as long as the ideas, expectations, or benefits elicited in the interviews are

conveyed. Nevertheless, we tried to use unambiguous and meaningful formulations for

the requirements.

Altogether, the list of final requirements, which can be found in the section 'Complete

list of Elicited Requirements' of the appendix, is comprised of 141 requirements. Some

of the elicited requirements do not fit the scope of the thesis so that they were removed

39 See elaboration on requirements in chapter '3.1.1 Software Requirements Specification'.

40 The format of the IDs of the rudimentary requirements is 'xx-yy'; 'xx' is the number of the interview
and 'yy' is a sequential number counting the requirements per interview.

41 To avoid confusion with IDs of final requirements IDs listed in the sources section were prefixed with
'INT-'.

42 The format of the IDs of the final requirements is 'aa-bb-...-uu-vv'; 'aa' is the number of the main
group, 'bb' is the number of the highest subgroup, 'uu' is the number of the lowest subgroup, and 'vv' is
a unique number among the requirements and groups in the lowest subgroup.

29

from the list of requirements. These were requirements like an interface with an online

pharmacy for purchase of pharmaceuticals, a search for suitable medical practitioners,

or a directory of pharmacies. Removing out-of-scope requirements reduces the number

of requirements to 132. In order to get a manageable amount of requirements, we

additionally removed all requirements that were mentioned in less than four interviews

because requirements mentioned more often by potential users are probably important

to more users than requirements mentioned less often. Removing the requirements that

have only a few sources left us with a controllable set of 31 requirements. Figure 3-2

depicts the tree structure of the groups containing the 31 remaining requirements, which

will be described in the following.

3.2.1 Usability

Requirements in the group 'Usability' are intended to improve ease of use of the

application by, for example, increasing readability or comprehensibility. These require-

ments are arranged in four subgroups 'Drug Information Tab', 'Readability', 'Intuitive

Operation of Web Application', and 'Comprehensibility'.

Fig. 3-2: Grouping of requirements which were mentioned at least four times (The numbers in front of the

name identify the group and the number in brackets behind the name give the number of requirements in

the group.)

30

Drug information tab43 refers to the tab that provides the information on

pharmaceuticals. Available alternative dosage forms of a pharmaceutical represent

additional useful information that the drug information tab should provide. This, for

example, would be useful if patients had problems with swallowing a pill so that they

would rather dissolve the pharmaceutical in a fluid and drink it. Locating of desired

information in the drug information tab would be improved by providing a way to jump

directly to sections of information. This could be achieved by providing links to the

sections of information at the top of the drug information tab or in a side bar. A

disadvantage of package information leaflets is that they have to provide information

which is irrelevant for some patients. The web application should not have the same

drawback and provide only the information the user needs. Side effects are such

information that many patients are not interested in until they occur. Therefore, the web

application should offer functionality to filter side effects by frequency of occurrence so

that user can, for example, select only side effects that occur very often or often for

display.

ID Requirement

01-01-04-02 Display alternative dosage forms of a pharmaceutical.

01-01-05 Enable the user to go to a specific section of drug information.

01-01-07 Do not display more information than the user needs.

01-01-07-02 Allow users to filter side effects by frequency of occurrence.

Tab. 3-1: Requirements: 'Drug Information Tab' subgroup

Readability is another object for consideration to achieve a patient-friendly web

application. An often requested feature to improve readability is the adjustment of the

font size. With the interviews, we rebutted the assumption in chapter '2.2.2 GUI

Prototype Design Decisions' that browser zoom capabilities suffice for the adjustment of

the font size because most interviewees were not aware of the zoom functionality

offered by browsers. Accordingly, the web application needs to provide an easy and

intuitive way for adjustment of the font size, like listing examples of the available font

size. Another requirement is that the text should have a clear structure, layout, and

markup. This entails, for example, a consistent layout, splitting long text segments in

bullet points, and listing sections of information below instead on the side of each other.

Accentuation of the sub-headings in the drug information tab was identified as a further

43 The drug information tab is depicted in figure 2-3 on the left.

31

measure to increase clarity of the structure. The term 'sub-heading' refers to the

headings of the sections of information in the drug information tab like side effects or

contraindications. These could, for example, be accentuated with fitting icons or another

colour.

ID Requirement

01-02-01 Allow for adjustment of font size.

01-02-02 Clear structuring of text.

01-02-02-01 Accentuate sub-headings in drug information tab.

Tab. 3-2: Requirements: 'Readability' subgroup

To improve usability, operation of the web application should be intuitive. When using

desktop applications like a mail application, users normally do not mind spending some

time on configurations like setting up different connections for their mail accounts or

configuring mail filters. When using web applications, on the other hand, users

normally expect more intuitive operation. The Google search engine44 is a perfect

example for intuitive operation because users only have to enter a search string and get

fitting results. If necessary, one can also use advanced search options or spend some

time studying manuals45 to learn a dedicated search language for more potent search

requests. In the interviews we discovered that different users prefer different GUI

designs. Inexperienced users seem to prefer a simple GUI, which provides only the most

important controls and settings. On the contrary, more experienced users prefer fast

access to the available functionality and do not mind a GUI that displays more settings

and controls at once. To satisfy both preferences and to avoid confusion of

inexperienced users, the GUI should hide all functionality except the most important

controls and settings. Additionally, more experienced users should be enabled to display

further functionality. Inexperienced users should be further assisted with an optional

guide for the retrieval of information on pharmaceuticals. Instead of letting the users

provide the input and configure the options for the output by themselves, the guide

should ask them for required input, their preferences for the output and reduce the

amount of initiative required from the user. Further assistance with the operation of the

web application should be offered by a start page that outlines the purpose and basic

operation of the application in a succinct way.

44 The Google search engine can be accessed with the URL 'www.google.com'.

45 See 'http://support.google.com/websearch/?hl=en' for a collection of manuals for the Google search
engine.

32

Further requirements related to the operation of the web application refer to

insufficiencies of the GUI prototype. The input field for the basic search needs to be

clearly noticeable. In the GUI prototype, as depicted in the top left corner of figure 2-2,

the input field is located below the list-select for pharmaceuticals. At this position many

interviewees overlooked it or thought it was a filter for the list-select. All objects that

can be closed need to indicate where the user can click to close them. A pop-up in the

GUI prototype misses such indication. This confused some users and they did not know

where to click to close the pop-up. Moreover, some more intuitive functionality for

creation of new tabs needs to be found. While many interviewees deemed tabs a useful

feature, they did not understand how tabs could be created and the interviewer had to

explain it. Therefore, it is necessary to find a way for intuitive creation of new tabs that

still allows users who do not want tabs to use the application without tabs.

ID Requirement

01-03-01-02 Hide functionality that might confuse inexperienced users.

01-03-01-02-04 Guide inexperienced users through the application rather than
offering them many different controls and settings.

01-03-01-03
Make the search field in panel 'Medikamenten-Auswahl' clearly
noticeable.

01-03-03 Display close buttons/icons for everything that can be closed.

01-03-04-01 Intuitive functionality for creation of new tabs.

01-03-06-01 Display introductory information at application startup.

Tab. 3-3: Requirements: 'Intuitive Operation of Web Application' subgroup

Requirements related to the comprehensibility of the provided information are grouped

in the subgroup 'Comprehensibility'. An important feature is the provision of

explanations for technical terms because the information on pharmaceuticals contains

many words that people who are not medical professionals are not familiar with.

Accordingly, these words inhibit the comprehensibility of the provided information so

that they need to be explained in a comfortable way. Consequently, explanatory text,

like the tooltips for buttons, should be in common wording as well. For example,

instead of using the English term 'Header' the German term 'Kopfzeile' should be used

when referring to the header. Furthermore, usage of abbreviations should be avoided

because they might be ambiguous and complicate the mental processing of the provided

information. In patient information leaflets abbreviations might be a viable option due

to space restrictions but a web page has no space restrictions so that usage of

abbreviations is more bothersome than useful.

33

ID Requirement

01-05-01 Use common wording in explanatory text.

01-05-02 Avoid abbreviations in text.

01-05-03 Explain technical terms.

Tab. 3-4: Requirements: 'Comprehensibility' subgroup

3.2.2 Functionality

The group 'Functionality' contains requirements that are concerned with the

functionality the web application should offer. The group is divided in the five

subgroups 'Linking to Pharmaceuticals', 'Search for Pharmaceuticals', 'Additional

Functionality', 'Contact to Operating Authority', and 'User Accounts'.

The subgroup 'Linking to Pharmaceuticals' holds requirements that deal with

functionality to access information on pharmaceuticals that have a relationship with the

currently displayed pharmaceutical. Only one requirement in this group was mentioned

in more than three interviews: When viewing a pharmaceutical users should be able to

select pharmaceuticals with the same active pharmaceutical agent as the currently

displayed pharmaceutical. This could be accomplished by, for example, providing a list

of pharmaceuticals with the same active pharmaceutical agent when the user clicks on

the active pharmaceutical agent displayed in the drug information tab. Such

functionality would be useful to find cheaper alternatives to a pharmaceutical or to find

a pharmaceutical with different further ingredients.

ID Requirement

02-01-01-01 Display pharmaceuticals with same active pharmaceutical agent as
the currently displayed pharmaceutical.

Tab. 3-5: Requirements: 'Linking to Pharmaceuticals' subgroup

Requirements specifying functionality to search for pharmaceuticals are grouped in the

subgroup 'Search for Pharmaceuticals'. Required search parameters are the name, field

of application, and the active pharmaceutical agent of the pharmaceutical. A field of

application describes medical conditions, like for example fever, in which a

pharmaceutical is appropriate for treatment. Searching for a pharmaceutical by name

could be problematic if users do not know the exact name of a pharmaceutical. To solve

this problem, the application should also provide a way to find a specific pharmaceutical

34

without knowing the exact name. If the user does not know other specifics like the field

of application or the active pharmaceutical agent, the user could be assisted by a list that

contains all available pharmaceuticals.

ID Requirement

02-02-01-01 Search for pharmaceuticals by field of application.

02-02-01-02 Search for pharmaceuticals by name.

02-02-01-04 Search for pharmaceuticals by active pharmaceutical agent.

02-02-03-01 Find specific pharmaceuticals without knowing the exact names.

Tab. 3-6: Requirements: 'Search for Pharmaceuticals' subgroup

The title of the group 'Additional Functionality' refers to functionality beyond the access

to and provision of information in patient information leaflets. This functionality

leverages the capabilities of a web application and is important to distinguish the web

application from patient information leaflets which cannot offer such functionality.

Obviously, aggregation of information on multiple pharmaceuticals is functionality that

can hardly be achieved with patient information leaflets. In the interviews, we elicited a

few requirements for functionality that aggregates information on multiple

pharmaceuticals. Users desire a feature that checks a set of pharmaceuticals for adverse

drug reactions. This would require the user to specify a set of pharmaceuticals and the

application would then check the specified pharmaceuticals for known adverse drug

reactions and indicate whether the pharmaceuticals can safely be taken with each other,

should not be taken with each other, or whether taking these pharmaceuticals with each

other requires some precautions. Further functionality based on a set of pharmaceuticals

is the listing of all side effects of multiple pharmaceuticals. Such a feature could be

useful to check whether symptoms a user is experiencing, like fatigue, can be associated

with a pharmaceutical the user is taking.

Moreover, interviewees mentioned functionality to compare pharmaceuticals by price.

Such information could be useful to find the cheapest pharmaceutical in cases where

pharmaceuticals that do not need prescription, like a headache tablet, are required.

Another feature for comparison of similar pharmaceuticals is desired as well. It should

be possible for users to select two similar pharmaceuticals for comparison. The

application should then offer some functionality to aid users in comparing the selected

pharmaceuticals. This could be useful to establish characteristics in which two

pharmaceuticals that seem identical differ so that users can decide which one is more

appropriate. Another problem mentioned by the interviewees, for which problem

35

solving could be assisted by the application, is the identification of pharmaceuticals. If

users, for example, keep pharmaceuticals in a pill box or remove a blister from the

packaging and find such pharmaceuticals later on, they might not be able to identify the

pharmaceutical. To provide assistance in such cases, the web application should provide

images of the pharmaceutical in its dosage form, the blister or other inner packaging,

and the outer packaging so that users can guess the kind of pharmaceutical and verify

their guesses through comparison with the provided images. Integrating images in the

drug information tab would also make the application look more lively and less text

heavy. The interviewees stated additionally that it would be useful to print the selected

information of the currently displayed pharmaceutical. This would be useful to create a

sort of personal patient information leaflet that provides only the required information

and has a satisfactory font size. Obviously, the print out should only contain the

information on the pharmaceutical and not GUI elements.

ID Requirement

02-03-01-01 Check a set of pharmaceuticals for adverse drug reactions.

02-03-01-02 List all side effects of a set of pharmaceuticals.

02-03-01-04-01 Offer price comparison of similar pharmaceuticals.

02-03-01-04-02 Compare similar pharmaceuticals.

02-03-02 Support identification of pharmaceuticals.

02-03-05
Provide functionality to print the selected information of currently
displayed pharmaceutical.

Tab. 3-7: Requirements: 'Additional Functionality' subgroup

In the interviews, we found out that users desire some way to contact the operating

authority of the web application; this is expressed in the subgroup 'Contact to Operating

Authority'. Accordingly, some functionality to get in touch with the operating authority

needs to be implemented and the users should be informed how they can use this

functionality. Interviewees deemed such functionality useful for tasks like getting help

with the application, giving feedback on the application, or reporting errors found in the

provided information.

ID Requirement

02-04-01
Inform users how the owner/operating authority of the web
application can be contacted.

Tab. 3-8: Requirements: 'Contact to Operating Authority' subgroup

36

Requirements categorised in the subgroup 'User Accounts' are related to functionality

requiring user accounts. As in the subgroup 'Contact to Operating Authority', only one

requirement of the 'User Accounts' subgroup was mentioned in at least four interviews:

The application should allow users to post their experiences with the application or

specific pharmaceuticals, and to access experiences provided by other users. This

functionality requires user accounts to inhibit spam at least a little and to increase

motivation for users to post correct information. A forum or a comment section could be

a possible implementation of this requirement. Realisation of this requirement would,

for example, be beneficial for users to get questions answered, to get in contact with

people in similar situations, or to decide whether the application is trustworthy.

ID Requirement

02-05-02
Provide experiences of other users with the application or specific
pharmaceuticals.

Tab. 3-9: Requirements: 'User Accounts' subgroup

3.2.3 Software System Attributes

In contrast to the groups 'Usability' and 'Functionality', only two requirements related to

software system attributes were mentioned in more than three interviews. We already

addressed software system attributes in a dedicated interview section but the responses

were rather general remarks on software system attributes of web applications than

requirements. Interviewees expect web applications to respond quickly to their requests

but seem to be used to occasional latency caused by their internet connection.

Availability of web applications needs to be high so that users can access web

applications whenever they want. Operation of web applications needs to be intuitive so

that user can work with a web application right away without having to study a manual

or tutorial. A manual is seen as useful to discover advanced functionality once users are

satisfied with the basic functionality. However, as already mentioned above, at

application startup some users expected a short introduction to get an idea about the

purpose of the application and to get very basic instructions. Only a few interviewees

mentioned security and reliability concerns with the provided information by

themselves. Anyhow, when such concerns were directly addressed interviewees

expected the application to provide reliable information, to abstain from profiling, and

to avoid misuse of their provided information. Methods mentioned to increase perceived

reliability are a professional appearance, provision of information that is consonant with

37

information provided by patient information leaflets, no collection of unnecessary data,

patronage of some reliable organisation, and simply stating that data privacy will be

honoured. The latter was stated in more than three interviews. Users should be informed

that they will not be profiled while using the application and that collected data will

only be utilised by the web application and not misused. Another desired characteristic

of the application is a design that is more diversified, attractive and appealing than the

GUI prototype design while still maintaining a professional and respectable appearance.

Interviewees do not demand a major change of design but some minor changes that

liven up the design.

ID Requirement

03-01-02-02 Inform users that they will not be profiled and that collected data
will not be applied beyond the scope of the application.

03-04-02 Make GUI design more diversified/attractive/appealing

Tab. 3-10: Requirements: 'Software System Attributes' group

3.2.4 Concluding Remarks

In the following, we will refer to the 31 requirements presented above with the term

'relevant requirements'. The relevant requirements answer the first research question:

What are the requirements of a web application providing aggregation and refinement of

information in patient information leaflets? The relevant requirements reveal the

requirements of a web application providing aggregation and refinement of information

in patient information leaflets. Obviously, the 31 requirements do not represent a

complete list of requirements for a web application providing aggregation and

refinement of information in patient information leaflets; with the interviews alone, we

elicited more than a hundred further requirements. However, the 31 requirements were

mentioned in more than a third of the interviews. Thus, it is likely that out of all elicited

requirements these requirements are the requirements that are important to a large

subset of all potential users. Therefore, they should serve as a good basis for the

implementation of the prototype targeted in this thesis. It needs to be taken into

consideration that the relevance assessments of requirements 01-01-04-02, 02-02-01-01,

and 02-03-01-02 might be biased because we used similar requirements as examples

during the interviews. Nevertheless, we decided to keep these requirements because

users could still make up their own mind about the usefulness of the requirements.

38

Furthermore, implementing a requirement that users deemed useful is more reasonable

than refraining from a requirement because of possible bias which might be

insignificant.

Remaining requirements that were not listed above and are not beyond the scope of this

thesis will be taken into account if they give particulars on requirements to be realised,

or help solving problems or uncertainties that occur during design/implementation.

They might be useful for later increments of the web application so that they are listed

in the section 'Complete list of Elicited Requirements' of the appendix, but in this thesis

they will not be processed any further.

3.3 Requirements Evaluation

All relevant requirements46 fit the definition of requirements because they represent “a

condition or capability needed by a user to solve a problem or achieve an objective”47

and feature the characteristics of good requirements mentioned in chapter '3.1.1

Software Requirements Specification'. They are correct because they were elicited from

potential users so that the required capabilities or conditions are actually needed.

Meaningful phrasing and the associated descriptions prevent ambiguity. The require-

ments are complete because they describe the top level functionality the prototype

should provide and necessary associated information. Since the requirements do not

contradict each other and do not refer to the same real-world object with different terms,

the requirements are consistent. Although some requirements are not quantifiable, in the

scope of this thesis the requirements can be considered verifiable. For the development

of the prototype, the requirements need to indicate ideas and expectations of potential

users so that they do not necessarily need to be quantifiable. It must be possible to check

whether a requirement was taken into account and implemented, but there is no especial

need to verify whether a requirement has been met exactly. The requirements are

traceable as well because they have a unique identifier and reference their sources.

However, since the sources provide no relevant information they are not specified in

this thesis; only the number of sources for each requirement, which were used to filter

the requirements, are specified in the appendix. Furthermore, the relevant requirements

address the targeted aspects of the web application: user interface/usability, functionality

46 A list containing all relevant requirements can be found in the appendix.

47 IEEE (2010), p. 301.

39

and software system attributes. Only two requirements regarding software system

attributes is a little sparse, but, as described in '3.2.3 Software System Attributes', the

interviews pictured general expectations of the software system attributes.

3.3.1 Problematic Requirements

We established that the relevant requirements fit the definition of requirements and

sufficiently embody good characteristics of requirements. Nevertheless, checking the

relevant requirements for potential problems they might cause in the future led to the

decision to abandon two further requirements.

Requirement 02-03-01-04-01 states that the application should provide a feature that

enables users to compare similar pharmaceuticals by price. Such functionality is quite

useless for pharmaceuticals that require prescription because in these cases physicians

and health insurance companies decide which pharmaceutical a patient gets. If

pharmaceuticals require no prescription other factors like availability, lead time, or

accustomed sources of supply might be more important than the price of the

pharmaceutical. However, the main reason for abstaining from provision of price

information is the need of a high quality data base. In order to provide good, complete

and nicely formatted information on pharmaceuticals we need a data base that holds the

required data. Without a medical background single-handedly creating such a data base

is error prone and it might be problematic to get access to the required information. It

would be advantageous if the information was provided by medical professionals,

ideally, by the manufacturers and pharmaceutical companies that are already responsible

for patient information leaflets. This would also increase the perceived reliability of the

web application due to the fact that the information provided by the web application is

provided by the same organisation that provides the information in patient information

leaflets. Providing price information for pharmaceuticals would probably reduce the

interest of pharmaceutical companies to support the application. A neutral platform that

provides only information on pharmaceuticals and no subliminal recommendations,

which would be the case if price information were provided, seems to be more likely to

attract support of pharmaceuticals companies so that we decided to not provide a price

comparison of pharmaceuticals and to remove requirement 02-03-01-04-01.

40

Requirement 02-05-02 is the other requirement that fell victim to our check for potential

problems. Kaletsch, Sunyaev (2011) points out that serious trouble can be caused for

patients if unauthorised persons gain access to their health information.48 Especially

social functions can breach a patient's privacy and are considered a top threat: Patients

might expose sensitive information on their own or provide wrong information, which

could cause harm to other patients. Additionally, with case studies of systems for the

management of personal health records Kaletsch and Sunyaev established that no

analysed system was unrestrainedly recommendable. Therefore, we decided to refrain

from implementing functionality that requires user accounts in order to avoid collection

of sensitive data. It is better to store sensitive data in an application that is specifically

designed for that purpose and to interface such application to provide functionality that

requires user accounts. The German healthcare telematics infrastructure, which is

currently being established, in combination with the electronic health card, which is

currently being released to all German citizens, would be a suitable candidate. Similar

to our prototype it is designed for use in Germany and not subject to foreign privacy

laws. All German citizens will have access to the telematics infrastructure and can use

the electronic health card as unique identifier. Consequently, we decided not to

implement functionality that requires user accounts until recommendable applications

for management of personal health records exist. Requirement 02-05-02 is especially

problematic because it asks for social functionality where patients can exchange

personal experiences. Using this functionality could bring them to unintentionally

provide sensitive or false information.

3.3.2 Elicited Requirements versus Objectives for Preliminary Draft

Abandoning requirements 02-03-01-04-01 and 02-05-02 leaves us with 29 relevant

requirements for the further design and implementation of the prototype. Mapping the

relevant requirements to the objectives for the preliminary draft49 brings out that most

elicited relevant requirements are related to functionality for the aggregation and

refinement of information in patient information leaflets. In the GUI prototype we

implemented/insinuated only some basic functionality for the aggregation and

refinement of information in patient information leaflets because we deemed such

48 See regarding this and the following 2 sentences Kaletsch, Sunyaev (2011), p. 2, 5-6.

49 A mapping of the relevant requirements to the objectives for the preliminary draft can be found in the
appendix: 'Mapping of relevant requirements to objectives for preliminary draft'.

41

functionality too dependent on user preferences. Thus, it is an advantageous result that

we elicited many requirements that illustrate the aggregation and refinement

functionality. The other objective that seemed to be in need of user input to improve the

achievement status was concerned with the reporting of wrong information. However,

the interviews showed that for reporting of wrong information users are satisfied with

functionality to contact the operating authority of the web page. As already mentioned

in '3.2.3 Software System Attributes', the application design objectives were not further

specified with requirements. Interviewees expect the web application to behave like any

other popular web application and mentioned no special requirements regarding the

application design objectives.

The relevant requirements uncover some deficiencies of the GUI prototype as well.

These aspects were either not considered in the objectives for the preliminary draft or

wrong assumptions were made. In contrast to our prior considerations, the interviews

showed that the zoom functionality of the browser is not sufficient for the adjustment of

the font size because many potential users do not seem to know this feature.

Functionality for creation of tabs needs to be more intuitive. The search field for the

basic search needs to be in a more prominent position. Some users prefer a short

introduction and instructions at application startup. Additionally, it should be possible to

print the information provided on pharmaceuticals. Otherwise, the objectives for the

preliminary draft were affirmed by the elicited requirements and their realisation further

specified. Required changes and extensions of the GUI prototype do not seem to be too

severe and contradictory so that it should be possible to reuse much code of the GUI

prototype.

42

4 Conceptual Design

Purpose of this chapter is to draw up a system design of the prototype. The resulting

design will serve as a basis for the implementation and as a foundation for the

description of the implementation. However, we will not go into details and draft every

last bit of the application. The resulting design should just provide a general

understanding of the application, demonstrate how the application performs its tasks

and serve as guiding framework for the implementation. Detailed descriptions for

important aspects of the application will be provided in chapter '5 Implementation'.

Thus, only the basic architecture of the application is described in this chapter.

Additionally, we will describe technologies used for running the application or

implementing the application because those influence the design and provide/aid in

providing required functionality. Furthermore, we will point out limitations of the

design or abstractions made due to the fact that we are developing a prototype and not

an application intended for live operation.

4.1 Vaadin

We already used Vaadin for the implementation of the GUI prototype and in the

interviews we got no negative feedback that concerned Vaadin or gave a reason to

refrain from using Vaadin. Furthermore, using Vaadin also for the development of the

application eases reuse of code that was written for the GUI prototype. Therefore, we

are going to use Vaadin for the development of the application as well. Since using

Vaadin has a great influence on application design Vaadin is described first. In chapter

'2.2.1 GUI Prototype', we have already provided a short description of Vaadin and listed

a few additional benefits of using Vaadin: abstraction of web technologies and

associated browser compatibility issues, increased security, and easy integration of

further components. Figure 4-1 depicts the general architecture of Vaadin. In the

following we will provide a more detailed description of the Vaadin framework by

explicating the architecture components depicted in figure 4-1 from left to right.

43

The50 client-side engine uses the Google Web Toolkit (GWT51) to render the user

interface in the web browser of the user.52 GWT is a software development kit for the

implementation of widgets in Java, which are compiled to JavaScript, so that they can

be rendered in the browser. All user interface components (widgets) provided by Vaadin

are implemented with GWT. Capturing of user interaction and rendering the widgets

composing the user interface according to application state are tasks of the client-side

engine. User interactions with the widgets that compose the user interface are initially

captured by the GWT widgets and then relayed to the server side by the client-side

engine. Correspondingly, responses from the server side are relayed to the GWT

widgets by the client-side engine so that the user interface reflects the application state.

As long as the widgets provided by Vaadin are sufficient and no additional GWT

widgets need to be implemented or integrated, developers do not need to concern

themselves with the client-side engine because client-server-side communication and

appropriate rendering of the user interface is handled by Vaadin.

Java Web Server, the next architecture component, is the platform on which the

application is executed. Vaadin applications can be deployed as Java web applications.

A Java “web application is a collection of servlets, html pages, classes, and other

resources that make up a complete application on a web server”53. “A servlet is a Java

technology based web component, managed by a container, that generates dynamic

content. Like other Java-based components, servlets are platform independent Java

classes that are compiled to platform neutral bytecode that can be loaded dynamically

50 Grönroos (2011), p. 4.

51 See 'http://code.google.com/webtoolkit' for more information on GWT.

52 See regarding this paragraph Grönroos (2011), p. 30-35, 230.

53 Sun Microsystems (2001), p. 59.

Fig. 4-1: General architecture of Vaadin50

44

into and run by a Java enabled web

server”54. Therefore, the application

can be executed on any application

server that supports the version of

the Java Servlet API used by

Vaadin55 and has access to a

compatible Java runtime environ-

ment (JRE). Possible application

servers are, for example, Apache

Tomcat56, which we will use to

deploy the application, or Jetty57,

which we use during development

because of its comfortable integra-

tion with Eclipse58.

As59 stated before, the Vaadin user

interface (UI) components are used

to compose the user interface. The

previously described UI compon-

ents that are handled by the client-

side engine have a counterpart on

the server side, as depicted in figure

4-2, which illustrates the Vaadin architecture in more detail than figure 4-1. User events

registered on the client side are relayed to an abstraction layer called Terminal Adapter

and the corresponding changes of the user interface are sent from the Terminal Adapter

to the client side.60

54 Sun Microsystems (2001), p. 17.

55 Vaadin 6.7.0 supports Java Servlet API 2.3 (https://vaadin.com/features).

56 See chapter '4.3.1 Tomcat' or 'http://tomcat.apache.org/' for more information on Apache Tomcat.
57 See 'http://www.eclipse.org/jetty/' for more information on Jetty.
58 Eclipse offers among other things an integrated development environment which we used for the

development of the web application. See 'http://www.eclipse.org/home/newcomers.php' for more
information on Eclipse.

59 Grönroos (2011), p. 30.

60 See regarding this sentence and the rest of this paragraph Grönroos (2011), p. 30-31.

Fig. 4-2: Client- and server-side Vaadin architecture59

45

Communication is accomplished by asynchronous HTTP61 or HTTPS62 requests using

the JSON63 based User Interface Definition Language (UIDL64). User events relayed

from the client side to the Terminal Adapter are forwarded to the corresponding server-

side UI components and, accordingly, the changes made by server-side components are

interpreted by the Terminal Adapter and communicated to/realised by the client-side

engine. A benefit of the Terminal Adapter is that it handles all communication with the

client side so that the client side could be implemented with completely different

technology and the application, which only communicates with the Terminal Adapter,

would still work.

The Java web application we will develop runs on the server and uses a set of Vaadin UI

components to provide the GUI. Furthermore, the application provides the functional

logic and access to databases or other useful services.

4.2 Application Modules

The three main modules 'Graphical User Interface', 'Application Logic', and 'Data

Access' that form the application are depicted in figure 4-3. A module is “a logically

separable part of a program”65. With the term 'main module' we refer to the top-level

modules that are necessary to perform the tasks of the application.

Functionality that is not GUI related and does not directly interact with the database is

provided by the module 'Application Logic'. This module bundles auxiliary function-

ality like, for example, consolidation of results from multiple SQL statements or com-

pilation of SQL statements based on inputs made by the user. Another example would

be the processing and layout of information required for printing. Additionally, more

complex routines for tasks like checking a set of pharmaceuticals for adverse drug

reactions or comparing information provided on similar pharmaceuticals will be

61 The HyperText Transfer Protocol (HTTP) is the basic protocol for data communication in the world
wide web. See 'http://tools.ietf.org/html/rfc2616' for more information.

62 The HyperText Transfer Protocol Secure (HTTPS) combines HTTP with encryption to provide
encrypted communication. See 'http://tools.ietf.org/html/rfc2818' for more information.

63 The JavaScript Object Notation (JSON) is a lightweight, human- and machine-readable data-
interchange format. See 'http://www.json.org/' for more information.

64 The User Interface Definition Language (UIDL) is used to create (describe) complex user interfaces
and to communicate asynchronously with the server side. See 'http://www.uidl.net/doc/' for more
information.

65 IEEE (2010), p. 223.

46

provided by the 'Application Logic' module. Consequently, the module provides

functionality required by the 'Graphical User Interface'. Some routines implemented in

the 'Application Logic' module need access to the database and, therefore, need to

employ functionality provided by the 'Data Access' module. A module that concentrates

the application logic is useful because, otherwise, interchangeable functionality is easily

implemented redundantly in multiple classes.

Similar to the 'Application Logic' module the 'Data Access' module does not need

functionality provided by the 'Graphical User Interface' module and provides

functionality required by both other modules. In order to provide information on

pharmaceuticals we have to retrieve the information somehow. Hence, we will store the

required data in a database. Access to the database will be provided by the module 'Data

Access'. This module will consist of a set of classes that retrieve required data from the

database and perform simple preprocessing of the data so that it can be directly

processed by classes of the other modules. Preprocessing jobs that are employed in

multiple cases or are laborious constitute application logic and, accordingly, they will be

handled by the 'Application Logic' module. Handling access to the database in a

dedicated module is beneficial because it eases the handling of database related code.

Other modules or classes do not need individual implementations for database access

and database related code is stored in one place, which reduces coding and maintenance

effort. Moreover, common functionality can be easily reused and performance gains

might be achieved through a reduction of SQL connections and bundling of SQL

statements.

Fig. 4-3: Application Modules and their relationships. (The

module to which the arrow points is used by the module from

which the arrow originates.)

47

The user interface is provided by the module 'Graphical User Interface'. Since we will

use Vaadin and there is no immediate need for modifications on the client side, classes

that implement the server-side UI components constitute the 'Graphical User Interface'

module. These classes adopt and extend the UI components provided by Vaadin so that

they fit the needs of the application. Moreover, the UI components are combined to

provide side bars for navigation or settings, and individual tabs that provide, for

example, search results, search input fields, or information on pharmaceuticals.

Additionally, the classes implementing the GUI need to handle user events and forward

these to the respective classes or adopt the GUI accordingly. Application behaviour is

controlled by the user through UI events. Accordingly, the 'Graphical User Interface'

module does not provide functionality for the other two modules, instead, the other two

modules are needed to process the requests made by the users and provide appropriate

results.

We decided to use a modular architecture because it can be easily extended and adapted.

For example, if we were to offer a dedicated user interface for mobile devices in the

future, we could implement additional modules implementing the user interfaces for the

various platforms like Android or iOS66 and still use the 'Application Logic' and

'Database Access' modules to handle the user events. Additionally, we could easily use

another database. A change of the database just requires an adoption of the 'Database

Access' module so that it can access the new database and retrieve the required data. As

long as the other modules still require the same data they can remain untouched.

66 Android and iOS are operating systems for mobile devices, which are presently popular and widely
used.

48

4.3 Used Technologies

In order to ease implementation and deployment of the application we utilised some

subsidiary technologies. Vaadin was already introduced in chapter '4.1 Vaadin'. Further

used technologies will be described in the following.

4.3.1 Tomcat

As described in the chapter '4.1 Vaadin', Vaadin applications need a Java web server on

which they are executed. We decided to use Apache Tomcat, which is such a Java web

server and is easy to use. For local testing one basically only needs to copy the Tomcat

directory to a folder, paste the .war-archive containing the application and start the

server. Still, Tomcat can be configured67 for productive use and offers, for example,

settings for encrypted communication or a manager for deployment/undeployment of

applications during live operation. As already elaborated in chapter '2.2.2 GUI

Prototype Design Decisions', Tomcat is scalable because it can be run in a cluster, which

also increases availability of the application because if a node fails another node will

take over. Moreover, Tomcat is widely used and offers elaborate documentation so that

it is easy to obtain help in solving problems concerning Tomcat.

4.3.2 MySQL

MySQL is a relational database management system68 which we will use to store and

retrieve the information on pharmaceuticals. We will use MySQL because it is sufficient

for our needs since it can be used to store arbitrary data in a self-defined system of

relations/tables. Additionally, as mentioned in chapter '2.2.2 GUI Prototype Design

Decisions', MySQL is scalable because it is simple to run it in a cluster. Furthermore,

MySQL is widely used and well-documented so that it is easy to obtain help when

encountering problems with MySQL. MySQL can be obtained without a licensing fee

and as open source so that its source code can be viewed and improved by everyone.69

67 See the Apache Tomcat 7 documentation (http://tomcat.apache.org/tomcat-7.0-doc/index.html) for
more information on Apache Tomcat.

68 See 'http://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm' for a short tutorial that explains
relational database management systems.

69 See regarding this and the following 2 sentences Oracle (2011), p, 3-4, 6, 2756.

49

Establishment of a connection between Java and MySQL is straightforward. Moreover,

the database can be comfortably configured with a graphical administration interface.

There are certainly other database management systems as suitable as MySQL, but

since MySQL is sufficient for our needs we decided to use MySQL.

4.3.3 Hibernate

Hibernate70 is a Java library that provides object-relational mapping. Object-relational

mapping refers to associating (Java) objects with tables stored in a relational database.

This is, for example, useful to persist objects, that is storing objects in a relational

database when the application exits and restoring them in memory at application startup.

Persisting of objects is, for example, beneficial to keep the application state across

multiple sessions. However, for the prototype it is not necessary to persist objects, but

mapping objects to tables in the relational database is useful. It is more comfortable to

work with Java objects and having Hibernate handle communication with the database

than importing data with SQL queries. Additionally, it is easy to change to another

database. In such situations, only the XML files that map the objects to tables and the

connection information in the Hibernate configuration XML file would require

adopting. All application logic could remain untouched. This decreases dependence on

the database. Besides improving expandability through decreased dependence on a

specific database, the Hibernate query language (HQL) is quite similar to SQL, which

makes Hibernate easy to use if one already knows SQL.

4.4 Physical Infrastructure

As depicted in figure 4-4, clients access the application over the internet. Clients can

access the application from any device with an AJAX-capable browser. We have already

addressed the handling of scalability and availability issues in chapter '2.2.2 GUI

Prototype Design Decisions'. When a client starts the application a session is initiated on

a Tomcat application server. In order to service many clients simultaneously and to

match the available computing power to a changing number of clients the application

runs on a cluster of Tomcat servers. Each node in the cluster hosts the servlet and a load

balancing node redirects client requests based on a load balancing strategy like, for

70 See 'http://www.hibernate.org/' for detailed information on Hibernate.

50

example, redirecting clients to the node with the lowest load. By adding further nodes to

or removing nodes from the cluster the available computing power can be matched to

the demand of clients. Additionally, the load balancer avoids situations in which some

nodes are overburdened while others are idling. Availability is increased through session

replication so that sessions and tasks of a crashed node can be handled by other nodes.

The Tomcat nodes access the database over a private network. Similar to the Tomcat

cluster, database services are provided by a Linux Virtual Server (LVS) to meet

scalability and availability needs. The LVS consists of multiple physical servers that

host a replicated version of the MySQL database. One server serves as a master and

processes write requests, which are replicated to the other servers. The other servers

process read requests, which, in our case, represent most accesses to the database. Based

on the current requirements, write accesses are only necessary to update the provided

information and not required for the handling of client sessions. Hence, one server is

sufficient to handle database write operations. If a future extension requires more write

operations initiated by users, like storage of personal settings in the database, than one

server can handle, it will be possible to adopt the replication strategy accordingly. With

the exception of redirecting write accesses to the master version of the database the load

balancer of the LVS works like the load balancer of the Tomcat cluster. Scalability is

facilitated through adding or removing of physical servers and availability is ensured to

a high degree because SQL statements assigned to crashed servers can be handled by

available instances of the database.

Fig. 4-4: Network diagram of application.

51

4.5 Implementation Limitations

Since we are developing a prototype and not an application intended for live operation

we imposed some limitations on the software. In order to ensure high availability, it

would be beneficial to upgrade the physical infrastructure so that the application runs on

multiple clusters in different geographical locations. However, to run the prototype we

will even downgrade the physical architecture and deploy the prototype to a single

Tomcat running on a server which simultaneously runs the MySQL database. This

should be sufficient to handle the small amount of users which will test the application.

If the application runs well on a single server, running the application on a cluster will

only require the necessary hardware and some configuration effort. In order to run the

application in a cluster classes need to be serialisable. If a class is serialisable its objects

can be written to an output stream and recreated by reading an input stream. This is

necessary to transfer the application state between nodes of the cluster. Since the

prototype will run only on a single node we did not make the classes serialisable

because it was not necessary and it requires only some writing effort.

Additionally, we will not focus on security. Basic security principles, like avoiding SQL

injections, will be honoured but it is more useful to implement and demonstrate useful

functionality than putting much effort in the security of a system that is not intended for

live operation and, thus, collects no sensitive data. Implemented functionality will

additionally not be subject to elaborate legal considerations, instead, the focus is on

provision of useful functionality. Besides avoiding obvious legal infringements,

spending effort on legal considerations is more useful if it is planned that the application

will actually go live. As already mentioned, the number of implemented requirements is

limited as well. Accordingly, we will not provide a legal info71 because the application is

not intended for productive use and, thus, will only be accessed by a few people for

testing purposes. We will realise only the most important requirements to stay within the

scope and time restrictions of the thesis. For the same reasons we decided to forgo

repetitive gathering of user feedback, which would have been useful to ensure that the

application stays in congruence with user expectations. Another aspect that will not be

subject to much consideration is the administration of the application. Since we intend

to develop a proof of concept prototype and not an application for live operation,

features like performance monitoring, inserting new information into the database, or

71 With legal info we refer to the German term 'Impressum' which has to be provided on every web side
by law and provides information on the operating authority.

52

updating the database are of less importance than features that improve the user

experience. However, through the modular architecture such features could be easily

added later on.

4.6 Conceptual Design versus Gathered Requirements

The gathered requirements have only little influence on the conceptual design. Elicited

user expectations regarding availability, performance, and responsiveness of the

application were taken into account. Accordingly, we ensured that the physical

architecture is scalable and leads to a high availability. However, other requirements

like checking a set of pharmaceuticals for adverse drug reactions have, besides obvious

implications like necessity of a database, no direct influence on the architecture. This is

probably caused by the circumstance that users have only contact with the user interface

of web applications so that everything else does not matter as long as sufficient results

are provided. Hence, we designed the application not based on the requirements, which

could be accomplished with various architectures, instead, we focused on expandability

and fulfilment of performance and availability needs. User interface design might be

considered part of the conceptual design as well and is obviously influenced by the

requirements. However, we decided that the development of the user interface is more

related to implementation than conceptual design so that we will address this topic in

chapter '5 Implementation'.

53

5 Implementation

Chapter '4.2 Application Modules' describes the modular architecture of the application.

The implementation was conducted in corresponding steps. At first, the GUI was

implemented and then the 'Data Access' module. The 'Application Logic' module has a

supporting role and its functionality is implemented as needed by the other modules.

This chapter is structured as follows. First, the provision of the main functionality –

provision of information in patient information leaflets – is described, by illustrating the

initial implementation of the modules 'Graphical User Interface' and 'Data Access'.

Afterwards, the implementation of additional functionality which offers further services

to users is described. Implementation of additional functionality entails extending the

initial implementations of the 'Graphical User Interface' and 'Data Access' modules.

5.1 Graphical User Interface

Implementation of the GUI was aided by the GUI prototype, which we developed for

requirements elicitation. Large parts of code from the GUI prototype could be reused

and the analysis of the interviews led to a good understanding of user expectations.

5.1.1 Reorganisation of Graphical User Interface Data Management

In the GUI prototype every GUI component had a special purpose that was not served

by an alternative GUI component. Therefore, every component could hold its own data

and other components would be notified about changes of that data if they were affected

by them. However, in order to fulfil a requirement like, for example, hiding

functionality which might confuse inexperienced users (requirement 01-03-01-02) such

data management is not useful. Inexperienced users might prefer to be asked for their

preferences by the application when it is necessary, while other users might prefer a

component for changing settings that is always displayed. This requires two different

components which manage the same data. An example for such data is the selection of

visible GUI components. Redundant management of the data is superfluous and

bothersome. Keeping the data consistent consumes precious computing power and

54

becomes more complex with a rising number of components that work with the same

data. Hence, we adopted the 'Model View Controller' (MVC72) pattern to manage the

data required by the GUI components.

MVC basically consists of three entities for data management, which are called model,

view, and controller. The model is used to store data in a single location. Views visualise

the data stored in the model in similar or completely different ways for the users. User

interaction with a view is captured and expressed in the model by the controller,

conversely, the controller translates and expresses changes of the model in the views.

Accordingly, we split the classes implementing GUI components into two classes. One

serves as a model that holds the current configuration for the GUI component and the

other serves as a view and visualises the data for users. Obviously, multiple views can

use the same model. Duties and responsibilities of the controller are mostly handled by

Vaadin.

As an example for our MVC implementation the management of the visibility of the

individual GUI components is illustrated in figure 5-1. The classes ComponentSettings

and ComponentVisibility represent the model. In ComponentSettings every GUI

component whose visibility can be configured by the user is associated with a

ComponentVisibility object which stores the visibility of the component. PanelToggler

is a view for the model and offers check boxes that users can utilise to toggle the

visibility of a selection of GUI components. In the top right corner of figure 2-2, which

is a screenshot of the GUI prototype, the PanelToggler is depicted. Now the

PanelToggler is positioned similarly, as depicted in figure 5-2, but it offers an additional

72 See 'http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html' for more information on the Model
View Controller pattern.

Fig. 5-1: Class diagram: MVC for component visibility.

55

check box and the check boxes use ComponentVisibility objects instead of a

PanelToggler attributes as data source. Another view is the ComponentSelection-

Window, which, in contrast to the PanelToggler, offers check boxes for all GUI

components that can be hidden and opens as a pop-up. Figure 5-2 shows the

PanelToggler and the ComponentSelectionWindow simultaneously. The screenshot

illustrates that only GUI components whose associated check boxes are checked are

displayed and that check boxes for the same GUI component in the PanelToggler and in

the ComponentSelectionWindow are set to the same value since they are both linked to

the same data source. Vaadin manages the state of the check boxes and sets the flag in

the ComponentVisibility objects accordingly. Another controller task, which the

application needs to handle, is the actual enabling/disabling of the GUI components.

This task is handled by the ComponentSettings object as well so that it serves as model

and controller simultaneously. The ComponentSettings object already has the references

Fig. 5-2: Graphical User Interface: PanelToggler and ComponentSelectionWindow.

56

to the components and toggles the visibility of these based on events that are fired by

the ComponentVisibility objects and indicate a changed visibility value. Data necessary

for other GUI objects is managed in the same manner.

5.1.2 Realisation of Requirements

Enabling users to change the visibility of GUI components was necessary for the

realisation of requirement 01-03-01-02. In order to hide functionality that might confuse

inexperienced users, we display only the header and a single tab at application startup

that displays introductory information according to requirement 01-03-06-01. From now

on we will refer to this tab with the term 'home tab'. Displaying just the two components

should not confuse any user and users are provided with basic information about the

purpose and usage of the application. Additionally, the home tab provides buttons to

configure the displayed GUI components. With the buttons the application can be set

into standard view, expert view, or individual view. The standard view targets

inexperienced users and displays only the panel 'Medikamenten-Suche' that is used to

initiate a search for pharmaceuticals and a panel 'Basis-Funktionen' that offers basic

functionality like displaying the home tab, help, or information about the application,

and inserting a new tab. Accordingly, the standard view provides only the components

that are required for operation of the application. Further GUI components can be turned

on when they are needed. Switching to expert view makes all GUI components visible

so that users who are familiar with the application can easily access all offered

functionality. Clicking on the button for the individual view spawns a ComponentSelec-

tionWindow so that the users can configure which GUI components they want to be

displayed. Using less GUI components might also be useful to improve the performance

of the application because less JavaScript needs to be rendered if less GUI components

are used.

A comparison of the panel 'Medikamenten-Auswahl' in figure 2-2 and the panel

'Medikamenten-Suche' in figure 5-2 demonstrates the realisation of requirement 01-03-

01-03. The list-select for the direct selection of pharmaceuticals is removed because

such functionality is better provided with a tab or pop-up window, especially for a large

amount of pharmaceuticals. Through the removal of the list-select, the search field is

now clearly noticeable and the search field does not seem to belong to the list-select

57

anymore. Additionally, the search field is further emphasised through the search button

placed to its right. Moreover, we added a caption to the search field that clearly

indicates that the search field is used to find pharmaceuticals by name.

Another rather substantial modification of the GUI implementation was caused by the

fulfilment of requirement 01-03-04-01. Instead of switching between a mode where new

tab objects replace the current tab and a mode where new tab objects are inserted as a

new tab, new tab objects always replace the current tab. If users want to use multiple

tabs they can add an additional tab with a button in the panel 'Basis-Funktionen' or by

selecting the rightmost tab with the caption '#', which is also shown in figure 5-2. Users

can then select the tab they want to use and display any tab object they want in it. This

can be search results, help information, information on pharmaceuticals et cetera. This

methodology of tab management is more intuitive because it is similar to other

applications, like for example Firefox, so that many users are already accustomed to it.

Requirement 01-01-07 was already fulfilled in the GUI prototype. Users can select

which information on pharmaceuticals is displayed in the drug information tab with

check boxes in the panel 'Details' or by selecting a detail level in the panel 'Detail-

Level', which are depicted in figure 2-2 on the right. Additionally, we implemented

another view for the selection of displayed information. If users do not want to display

the panel 'Details' or 'Detail-Level' they can alternatively open a pop-up window by

clicking on the button 'Medikamenten-Details' in the panel 'Einstellungen', which is

depicted on the bottom left of figure 5-2. The pop-up for the selection of the displayed

sections of information on pharmaceuticals can also be opened directly from the home

tab.

According to requirement 01-01-05 we implemented a further modification related to

the drug information tab. As illustrated in figure 5-3, we introduced a navigation section

at the top of the drug information tab and below each section of information we inserted

links to go back to the top of the drug information tab. The links in the navigation

section can be used to jump to a specific section of information on pharmaceuticals.

Targeted sections are made visible if necessary. Users can go back to the navigation

section by clicking the links that titled 'Gehe zum Seitenanfang' and positioned below

each section.

To incorporate requirement 01-02-01, users can set the font size with buttons on the

home tab or in a pop-up which can be accessed from the panel 'Einstellungen'. In order

to display as much information as possible without scrolling, changes of the font size

58

affect only the text displayed in

the tabs that are in the centre of

the application and not the text in

the navigation components on

the left and right side of the

application. If users want to

resize the navigation components

as well, they can do this with the

zooming functionality provided

by their browser.

With the GUI implementation,

we additionally fulfilled the

following minor requirements: In

compliance with requirement 01-

03-03, every GUI component

that can be closed indicates this

with a close button, icon, or link.

To meet requirement 01-02-02-

01 we accentuated the sub-

headings in the drug information

tab by increasing the font size a

little and changing the colour from black to orange. This modification can be observed

by comparing a sub-heading in figure 2-3 to one in figure 5-3. Another feature that

eases locating a section of information is the already mentioned navigation section. A

further improvement of the text structuring, as mentioned in requirement 01-02-02, is

the change of the vertical alignment in tables from middle to top so that users can

clearly identify which columns are in the same row. Additionally, we utilised definition

lists instead of unordered lists in the help information in order to clearly separate the

headings from the explanatory information. All requirements realised during GUI

implementation are summarised in table 5-1.

Fig. 5-3: Navigation section of the drug information tab.

59

ID Requirement Realisation

01-01-05
Enable the user to go to a
specific section of drug
information.

Navigation section at top of drug
information tab, links to go to top of
drug information tab below each
section

01-01-07
Do not display more
information than the user needs.

Selection of detail level or displayed
information in panel 'Details', panel
'Detail-Level' and a pop-up window

01-02-01
Allow for adjustment of font
size.

Buttons on home tab, pop-up window

01-02-02 Clear structuring of text.
Vertical alignment in tables set to top,
utilisation of definition lists instead of
unordered lists

01-02-02-01
Accentuate sub-headings in
drug information tab.

Increased font size, colour changed
from black to orange

01-03-01-02
Hide functionality that might
confuse inexperienced users.

Only header and home tab displayed at
startup, selection of preferred view in
home tab, setting of component
visibility in PanelToggler or a pop-up
window

01-03-01-03
Make the search field in panel
'Medikamenten-Auswahl'
clearly noticeable.

Removal of list-select for
pharmaceuticals, placement of search
button to the right of search field

01-03-03 Display close buttons/icons for
everything that can be closed.

Display of close buttons, icons or links

01-03-04-01
Intuitive functionality for
creation of new tabs.

No automatic tab creation, allowing
users to insert new tabs with a button
in panel 'Basis-Funktionen' or by
selecting the rightmost tab

01-03-06-01
Display introductory
information at application
startup.

Displaying information on purpose and
utilisation of application at application
startup

Tab. 5-1: Summary of realised requirements during GUI implementation

60

5.2 Data Access

The database and database access are a crucial part of the application because the

database holds the information that is provided by the web application and, moreover,

the display of information in patient information leaflets is the main objective of the

application. To be able to provide information in patient information leaflets, the

following steps were necessary for the implementation of the 'Data Access' module. At

first the necessary data had to be collected and made retrievable in a database.

Functionality that enables the application to query the database had to be implemented.

Finally, the routines that conduct specific operations like searching a pharmaceutical or

retrieving information on a specified pharmaceutical were implemented and integrated

in the GUI.

5.2.1 Making the Data Available

When thinking about acquisition of the required data three alternatives come to mind:

digitising the information on one's own, data input by third parties or utilisation of

existing data. Developing an individual data model and digitising information in patient

information leaflets on one's own is probably the most effective way to ensure that the

provided data fits the needs of the application and achieves desired quality levels.

However, this approach is tedious, wasteful, and ineffective, especially in the scope of

this thesis, since much time would be wasted on data input. Data input by third parties

seems quite promising; the workload could be distributed between multiple entities,

data quality could be ensured by the input interfaces, and an own data model that

soundly supports the web application could be used. Yet, third parties might not be

motivated to help create a database for a web application in its infancy. Getting support

from third parties is more likely once the web application is operational and third parties

deem it beneficial. This might be useful to improve the provided information later on.

Wikipedia73 is a good example where such an approach works. Another problem that

occurs in our case is that we need to provide reliable information in order to avoid

misinforming users on pharmaceuticals which could obviously lead to serious and

harmful consequences. Since checking reliability of information with a software is too

complex and too difficult, data input by third parties would require too much effort for

73 See 'http://www.wikipedia.org/' for more information on Wikpedia.

61

checking the reliability and validity of the entered information. Hence, we decided to

use existing data. We chose to use the GELBE LISTE PHARMINDEX74 because it

offers large parts of the required information for many pharmaceuticals and we had

access to the database. A downside is that we have little influence on the formatting of

the data and need to cope with used abbreviations, technical terms, or concatenations of

information as well as the general data model and inconsistencies in the data.

The version of the GELBE LISTE PHARMAINDEX that we had access to and used is

a little chaotic. It contains many tables and some tables are even duplicates of each

other. Foreign key restrictions are not specified and data inconsistencies provoke

crashes of SQL statements. All in all, it was difficult to make sense of the cluttered

database. Therefore, we developed a similar data model, created our own MySQL

database and copied useful data into the MySQL database. We sifted through the

GELBE LISTE PHARMINDEX and replicated useful information in our MySQL

database step by step. This led to a data model that resembles the data model of the

GELBE LISTE PHARMINDEX since they represent the same information and

similarities ease the transfer from one database to another. However, we added primary

key restrictions and foreign key relationships so that connections between data are

expressed and enforced on the database level. Moreover, we removed inconsistencies

and transferred only the information we deemed useful. We designed the data model

with MySQL Workbench75 and the resulting data model is illustrated in figure 5-4. We

found the data model to be a great help for structuring the database, identifying

available information, and detecting missing information. The original database on the

other hand provided only many tables with no apparent relationships that had to be

sought out and verified with SQL. MySQL Workbench is distributed with MySQL.

Besides offering capabilities to design the data model, it can also handle the forward

engineering of the database from the entity relationship model. In combination with a

little Java program we wrote, this enables us to rapidly deploy changes of the database.

The Java program runs a sequence of routines that get the required information from the

GELBE LISTE PHARMINDEX, perform necessary filtering and transformation work,

and, finally, insert the information into the MySQL database.

74 See 'http://www.gelbe-liste.de' for further information.

75 See Oracle (2011), p. 2756 for more information on MySQL Workbench.

62

The MySQL database provides information on about 100,000 pharmaceuticals and

offers detailed information for a quarter of them. While this is not enough for productive

use it is a good start and should suffice for the prototype we are developing. As depicted

Fig. 5-4: Entity relationship diagram of used MySQL database.

63

in figure 5-4, mi_product is the central table of the data model and contains products. A

product is a pharmaceutical with a specific name, dosage form, and strength.

'Mucosolvan Infektionslösungskonzentrat' is obviously a different product than 'Aspirin

N 100mg Tbl.', but 'Aspirin N 100mg Tbl.' is, for example, also a product different from

'Aspirin protect 100mg Tbl.' or even 'Aspirin N 300mg Tbl.'. We inherited this definition

of a product from the GELBE LISTE PHARMINDEX. Other interpretations of a

product might be possible and more suitable for our application, but the previously

described definition of a product should suffice for our application. Changing the

interpretation of a product would probably cause more work than benefits since, for

example, most of the relationships and associations in the database depend on it. A

product is sold in different packages, which are stored in the table mi_package, and

have a specified size like, for example, 20 or 50 pills. Additionally, mi_package

provides further information like the dosage form, PZN, or the name associated with a

package.

Products that differ only in strength from each other comprise a product group which

are represented in mi_productgroup. 'Aspirin N 100mg Tbl.' and 'Asprin N 300mg Tbl.'

are, for example, in the same product group. The remaining tables represent either

relationships between tables or hold patient information leaflet information. Ingredients

of a product are represented in the tables mi_molecule, mi_product_molecule,

mi_moleculeType, and mi_moleculeOrigin. The tables mi_product_atc and mi_atc link

pharmaceuticals to ATC codes. Information on companies associated with pharmaceut-

icals are held in mi_product_company and mi_company. Relationships between

pharmaceuticals and ICD codes are expressed in mi_product_icd and mi_icd. Situations

in which health insurance companies subsidise taking of pharmaceuticals that do not

require prescription are stored in mi_product_productException and mi_productExcep-

tion. Most patient information leaflet information is captured in the table mi_basetext

that holds strings that provide information on pharmaceuticals, which is ordered in

different categories, like side effects, application, dosage, or contraindications.

The brief description of the data model shows that we have information regarding most

information that patient information leaflets, as described in chapter '2.1.1 Information

in Patient Information Leaflets', need to provide. Only for a few sections of information,

which are listed in the following, no information is provided by the database. In many

cases, information regarding dosage is not differentiated by age groups, like for example

different taking regulations for children and adults. No information regarding

64

countermeasures for problems caused by wrong dosage or other circumstances is

provided. How a pharmaceutical should be taken is not described distinctly, but such

information is sometimes bundled with the dosage information. Moreover, we have no

information regarding the issue date of the patient information leaflet and the use-by

date of the pharmaceutical, but these dates are not necessary because the web

application is not a patient information leaflet distributed with the pharmaceutical. Yet,

entries in mi_basetext are associated with an attribute valid date that gives a point of

time where the information was valid. We display the valid date in the drug information

tab so that users have more input to decide on the trustworthiness of the application.

A further deficit of the data is that most of the information is captured in strings which

consist of whole sentences. All side effects of an pharmaceutical are, for example,

stored in one string. Dosage information, contraindications, and all other categories of

information in mi_basetext are also captured in one string per category per product. This

causes, as demonstrated in the following example, unnecessary effort during the search

for pharmaceuticals. In order to search for pharmaceuticals by field of application it

would be useful to have associations between the pharmaceuticals and only the relevant

information like 'cough' or 'headache'. Instead, since the information is stored in strings,

we need to check many additional filler words, like 'field', 'application', 'of', 'are', 'and' et

cetera, which hold no relevant information. Additionally, in a reasonable way, only the

whole string can be presented to users. In order to filter side effects by frequency of

occurrence, it would be more convenient if the side effects were stored in multiple

records with an associated frequency of occurrence. Since the strings do not have

sufficient syntactical commonalities they cannot be automatically converted in a reliable

way and have to be used the way they are. Some of the strings use, in contrast to others,

a lot of abbreviations that due to ambiguities cannot be computationally replaced.

Furthermore, the formatting of the strings with HTML ranges from non-existent to very

sophisticated. While this leads to good presentations of the information for some

pharmaceuticals, the presentational differences are undesirable. It would have been

better to be able to present the information consistently and to build the representation

for the user from isolated records. However, manual revision of the strings could not be

squeezed into the time frame of this thesis and revising the strings with a program

would probably cause more problems than it solves due to ambiguities and insufficient

syntactical commonalities. Removal of the markup tags could easily be performed with

65

a simple program that matches them and replaces them with the empty string.

Nevertheless, the strings that were composed based on the markup tags are better

readable with them. Hence, we will have to work with the strings as they are.

On the other hand, benefits of the chosen approach are that, by creating our own

database, we could chose a data model that fits the needs of our application and by

getting the information from GELBE LISTE PHARMINDEX we have access to data

which is already in productive use and, thus, is likely to offer satisfactory quality.

Moreover, we have access to large parts of the relevant information. Another benefit

related to using our own database is that, if necessary, we can easily add further

information from other databases by extending our data model and adapting the Java

program that collects the required information and populates the MySQL database.

In conclusion, we have built a database that is sufficient for the purposes of the

prototype to be developed. The database can be easily extended if this is necessary for

future improvements and the quality of the data should be adequate to demonstrate the

merits of the web application.

5.2.2 Database Mapping

Besides having the information in the database the web application needs to be able to

access the database so that it can present the information to users. One way to

accomplish this is to use the standard Java application programming interface76 (API)

for accessing and working with data in relational databases. We chose this approach for

the simple Java program we used to populate the MySQL database. We established a

connection with the original database and the MySQL database and wrote multiple short

SQL statements that either get data from the original database or insert data into the

MySQL database. These statements were quite short and involved only a few tables at

once. However, working with the database and offering useful information to the user

entails querying data from almost all available tables and selecting pharmaceuticals

based on characteristics stored in different tables. This would require more complex

SQL statements. In order to ease the retrieval of the necessary information we used

Hibernate, which we already introduced in chapter '4.3.3 Hibernate'.

76 An API to access relational database is provided in the package java.sql. See the Javadocs
(http://docs.oracle.com/javase/7/docs/api/java/sql/package-summary.html) for further information.

66

With Hibernate database connections do not need to be managed manually and can be

administered more effectively by a connection pool which reduces the workload on the

database. Hibernate needs just an XML file that specifies the connection parameters and

then sessions that can be used to retrieve data and require no further configuration can

be obtained whenever database access is necessary. When using Hibernate, it is no

longer necessary to directly access the database. Instead, Java classes whose objects

represent the necessary data77 need to be implemented. Additionally, for each such class

an XML file needs to be written that specifies in which tables Hibernate can find the

associated data and how the database is organised. Accordingly, we implemented classes

for all needed tables and wrote corresponding XML configuration files. Afterwards, we

could obtain data from the database without SQL, instead, the data was retrieved using

HQL. With HQL we could directly query objects and read their attributes to present

information to the user without worrying about data type conversion, database

connections, or join conditions. The XML files specify what information is stored in

which tables as well as how to join the tables. Unless told otherwise, Hibernate gets

only the information that is actually used and joins tables automatically if necessary.

This behaviour eases writing of well performing code because it is only required to

specify which objects should be selected under which conditions and the actual

information, which can be accessed with the attributes of the objects, is loaded as

needed later on.

5.2.3 Provided Functionality

The Hibernate mappings in form of the classes that represent the data and the XML

configuration files make up a large part of the lines of code in the 'Data Access' module,

but the interesting facets of the the module are the classes that actually work on the data.

A search for pharmaceuticals is initiated in the GUI module. Users can choose between

two different ways of searching. They can either use a simple search to find

pharmaceuticals by name or use the advanced search that allows for various search

characteristics. The simple search is initiated in the panel 'Medikamenten-Suche', which

is depicted in figure 5-2. Users need to enter the name of the pharmaceutical they are

looking for into the text field and start the search by clicking on the search button.

77 The classes need to specify the attributes which should hold the desired information. Relationships
with other tables that are not unique are represented with collections that hold objects of the class
representing the other table. Additionally, the classes need a trivial constructor, another constructor to
set all the attributes and getter and setter for all attributes.

67

When users click on the button the entered name is checked for validity. If users specify

no string or less than three letters an error message, which points out that the user has to

specify a search parameter with a length of at least 3, is raised. Otherwise, an HQL

statement selects all pharmaceuticals where the name specified in mi_product fits the

specified search string. The resulting pharmaceuticals are then listed in a tab so that

users can select them to display the patient information leaflet information. In order to

find a pharmaceutical name in larger strings, the SQL wildcard '%' is added as prefix

and suffix to the string specified by the user.

The advanced search is

initiated by clicking on the

button 'Erweiterte Suche' in the

panel 'Medikamenten-Suche'.

When users click on it an

advanced search tab, which is

displayed in figure 5-5, is

opened. In the advanced search

tab users can specify six differ-

ent search characteristics. Phar-

maceuticals can be searched by

name, PZN, field of applica-

tion, active pharmaceutical

agent, ATC code, or ICD code.

While searching for pharma-

ceuticals by ATC or ICD code is probably only useful for users with a background in

healthcare, the other four characteristics are useful for common users. If a user is

looking for a pharmaceutical similar to another pharmaceutical he could find one with a

search by active pharmaceutical agent. Searching for pharmaceuticals by field of

application is useful when looking for a pharmaceutical that helps with a concrete

ailment. Users could, for example, search for the terms 'cough' or 'headache'. Looking

up information on a specific pharmaceuticals is supported by the search characteristics

name and PZN. Users can either enter the name of the pharmaceutical or copy the seven

digit PZN from the packaging which might be shorter. Users start the actual search by

clicking on the button 'Suche'. The specified parameters are then checked for validity.

Methods for checking input strings are implemented in the 'Application Logic' module

so that they can be easily utilised by different classes. Strings specified for name, field

Fig. 5-5: Advanced search tab.

68

of application, and active pharmaceutical agent need to have a length of at least 3. The

PZN needs to be an integer with exactly seven digits. Input for an ICD code needs to

have a length between 3 and 6 and a string specified as ATC code should not have more

than 7 characters. If users enter no parameters, an error message, which informs them

that they need to specify input parameters, will be raised. If no search terms are

specified correctly, an error message will point out how the falsely entered terms need

to be provided. In a situation where some parameters are specified correct and others

wrong, pharmaceuticals will be searched with the correct parameters and a warning

message that informs users about the wrong input will be displayed.

As already insinuated, the advanced search allows for combinations of search criteria. In

order to perform the search, an HQL query is constructed according to the correctly

specified parameters. The query joins the corresponding objects and filters the results by

the entered criteria. The name parameter has to match the name specified in mi_product.

The ATC code parameter has to match associated ATC codes in mi_atc. ICD codes

stored in mi_icd have to match the ICD code parameter. The active pharmaceutical

agent parameter has to match an associated molecule in mi_molecule and the

relationship has to be classified as active pharmaceutical agent relationship in

mi_moleculeType. Other possible classifications are, for example, colourant or

preservative agent. The number specified in the PZN field needs to fit a PZN in

mi_package. User input for the field of application is compared to diseases

corresponding to ICD codes and strings with the category 'field of application' in

mi_basetext. Fitting pharmaceuticals are then listed in a search results tab, where users

can access patient information leaflet information by clicking on them. Except for the

PZN parameter, which should match exactly, all parameters are wrapped in wildcards so

that occurrences in larger strings are matched as well. Furthermore, users can use

wildcards for more complex parameter specifications78.

All performed matches are case-insensitive so that results are not omitted because of

different case sensitivity. Furthermore, the application remembers the last user input in a

search field so that users can easily modify a search without having to retype previously

entered criteria. In order to prevent SQL injections we used named parameters so that

user input is escaped and cannot be interpreted as HQL commands. To avoid waiting for

user input while having an open database connection that requires resources, we open a

session at the begin of a search and close it as soon as we have the results. Sessions are

78 'Aspirin%100%mg' would for example find all variants of Aspirin with a specified strength of 100 mg.

69

objects provided by Hibernate. Through the Hibernate configuration Hibernate knows

how to establish a connection, but sessions need to be created in order to indicate that a

database connection is needed by the application. The resulting objects representing the

pharmaceuticals are then passed as a list to the search results tab to be presented to the

user. If a user selects a pharmaceutical in the search result tab, the corresponding object

is passed to a drug information tab to be displayed. Since it would be wasteful to load

information for results which will not be displayed from the database, only the name,

which is displayed in the search results tab, and the product_id is definitely initialised in

objects that are passed to a drug information tab. Depending on the previously

conducted search other attributes might be initialised as well, but necessary attributes

concerning, for example, the dosage information or contraindications are not initialised.

Moreover, we already closed the session associated with the object. In order to obtain

the required information we added a further class to the 'Data Access' module that

provides functionality to retrieve all information to be displayed in the drug information

tab based on the product_id of a pharmaceutical. This approach is quite effective

because we need no sessions to remain open unnecessarily and load only the data that

we really need from the database.

5.2.4 Realisation of Requirements

With the various search criteria that can be used for the advanced search we fulfilled

requirements 02-02-01-01, 02-02-01-02, and 02-02-01-04 that demanded searching for

pharmaceuticals by field of application, name, and active pharmaceutical agent,

respectively. Moreover, the application can now serve its primary objective and

provides information in patient information leaflets to users. We did not collect many

requirements for the 'Data Access' because users have no direct contact with the

database. However, the 'Data Access' module is an important module because the

functionality it provides is necessary for satisfactory operation of the application.

ID Requirement Realisation

02-02-01-01 Search for pharmaceuticals by
field of application.

Field of application parameter for
advanced search

02-02-01-02
Search for pharmaceuticals by
name.

Name parameter for simple and
advanced search

02-02-01-04 Search for pharmaceuticals by
active pharmaceutical agent.

Active pharmaceutical agent parameter
for advanced search

Tab. 5-2: Summary of requirements realised by module 'Data Access'.

70

On the other hand, implementation of the 'Data Access' module showed that realisation

of some requirements is inhibited by properties of the data. Since the strings in

mi_basetext cannot be modified/broken down in a satisfactory manner, we have to use

them as they are. This entails displaying them with included HTML markup tags and

not being able to display less structured strings in a more readable way like, for

example, splitting them up in a list. This is problematic for achieving requirement 01-

02-02 because we simply cannot structure some of the data ourselves. However, this

affects only some data and some strings are even well structured. The consequences for

requirement 01-01-07-02 and 01-05-02 are much worse because realisation of these

requirements had to be abandoned. The information in the strings holding information

regarding side effects cannot be filtered by frequency occurrence because the strings

have no sufficiently common structure. Accordingly, we cannot provide functionality to

filter displayed side effects by frequency of occurrence. Moreover, abbreviations cannot

be removed reliably. The used abbreviations are ambiguous and inserting wrong

replacements would probably worsen readability and comprehensibility more than

sticking with the abbreviations. These requirements have to be realised by improving

the database later on. In the scope of this thesis, requirements 01-01-07-02 and 01-05-02

will not be implemented.

ID Requirement Reason

01-01-07-02
Allow users to filter side
effects by frequency of
occurrence.

Not enough syntactical commonalities in
strings, no relationship between side effects
and frequency of occurrence expressed on
database level

01-05-02
Avoid abbreviations in
text.

Abbreviations too ambiguous, consequences
of wrong substitutions probably worse than
keeping the abbreviations.

Tab. 5-3: Requirements abandoned during development of module 'Data Access'.

5.2.5 Concluding Remarks

The implementation of the 'Data Access' module described in chapter '5.2 Data Access'

serves as answer to the second research question: How can the information required for

the web application be obtained and displayed? The necessary information can be

obtained in multiple ways, like digitisation on one's own, data input by third parties, or

utilisation of existing data, which each pose their own challenges. For the prototype that

is to be developed in this thesis, we chose to leverage existing data. Independent of the

71

method chosen to obtain the data, databases are a useful tool to make the data available

to the application. We inserted the necessary information into a database and imple-

mented a module which provides functionality to access the data so that it can be

displayed or processed by other modules.

5.3 Additional Functionality

After the initial implementation of the modules 'Graphical User Interface' and 'Data

Access' the web application enables users to access patient information leaflet

information. However, to create further benefits for users, the web application can offer

further services beyond the mere representation of information in patient information

leaflets. The term 'additional functionality' refers to such services. In the course of this

chapter we will illustrate the implementation of additional functionality provided by the

web application.

5.3.1 Pop-up for Selection of Pharmaceuticals

In the GUI prototype the panel 'Medikamenten-Auswahl' included a list that contained

all available pharmaceuticals. During the initial implementation of the GUI module we

removed that list since it was not suitable to display many entries because the list was

too small and offered no filters. In order to realise requirement 02-02-03-01 we

implemented a similar list. The new list is displayed in a pop-up window because it

needs to be displayed only for the selection of a pharmaceutical and can be closed

afterwards. In order to make the list accessible we added a new button to the panel

'Medikamenten-Suche'. The pop-up gives a short introduction how the user can list

pharmaceuticals and provides two text fields to filter the pharmaceuticals, which are

displayed in a table, by name. To filter the displayed pharmaceuticals users need to enter

a string in one text field or both text fields and click on a button to display matching

pharmaceuticals. The first text field is used to specify a prefix and the second text field

is used to filter by a string that may be contained anywhere in the name. The list of

pharmaceuticals is filtered with the simple search functionality we described in chapter

'5.2.3 Provided Functionality'. When the user selects a pharmaceutical in the pop-up the

pop-up is closed and a drug information tab is opened for the selected pharmaceutical.

72

Besides searching for pharmaceuticals by name prefix the pop-up provides not more

functionality than a simple search by name. Yet, the pop-up is a useful feature because

users see the results in the same window and can easily adopt their search parameters to

find the pharmaceuticals they are looking for. Furthermore, in contrast to the simple

search, the pop-up does not limit the length of the strings entered for filtering.

Therefore, the application meets another requirement. If users do not know the exact

name of a pharmaceutical they can either conduct a search with a partial name or use the

pop-up for pharmaceutical selection, which displays the results in the same window, can

search for prefixes and has no input restrictions.

5.3.2 Detection of Adverse Drug Reactions

Taking multiple pharmaceuticals in combination might lead to some undesired effects.

One pharmaceutical might, for example, lessen the effectiveness of another

pharmaceutical. These effects are called adverse drug reactions. Checking a set of

pharmaceuticals for adverse drug reactions can, for example, be useful for users if they

want to take a pharmaceutical that requires no prescription like Aspirin and would like

to know whether the pharmaceutical can be taken in combination with other

pharmaceuticals they are taking on a regular basis. Reading all relevant package

information leaflets would be a time-consuming task. The web application, on the other

hand, is well suited for this task because it can access and process relevant information

much faster as long as the information is stored in the database.

Fig. 5-7: Tab for composing a set of pharmaceuticals

73

At first we implemented a new tab, which is depicted in

figure 5-7, that enables users to compose the set of

pharmaceuticals they want to check for adverse drug

reactions. In the following we will refer to this tab with

the term 'set composition tab'. When users open the set

composition tab and concurrently display information on

pharmaceuticals in other tabs, these pharmaceuticals are

automatically added to the set. In order to add additional

pharmaceuticals to the set users can use the button

'Medikament hinzufügen', which opens the pop-up

described in chapter '5.3.1 Pop-up for Selection of

Pharmaceuticals'. This pop-up can be configured to

perform different tasks when a pharmaceutical is

selected. In order to use the pop-up to add

pharmaceuticals to the set, we just needed to pass it

another object for selection handling that adds selected

pharmaceuticals to the set instead of opening a new drug

information tab. Users can remove pharmaceuticals from

the set with the button 'Medikament entfernen'. After

composition of the pharmaceutical set the check for

adverse drug reactions is started with the button

'Wechselwirkungen anzeigen'.

In order to detect adverse drug reactions we added two further tables mi_adr and

mi_adrText, which are depicted in figure 5-6, to the data model. Similar to the other

tables, the data hold in these tables is compiled from tables in the GELBE LISTE

PHARMINDEX. Adverse drug reactions are stored based on ingredients of

pharmaceuticals. Each recorded adverse drug reaction specifies a pair of molecules79

that cause the adverse drug reaction. Additionally, a rating for the graveness of an

adverse drug reaction and a text describing the adverse drug reaction are provided by

the tables. The description is stored in mi_adrText.

Since the tables specify adverse drug reactions based on ingredients, we need to check

for adverse drug reactions based on the ingredients of the pharmaceuticals that comprise

the set prepared in the set composition tab. We implemented a suitable algorithm in the

79 molecule_id specifies one ingredient and adr_molecule_id specifies the other.

Fig. 5-6: Tables storing data on

adverse drug reactions

74

module 'Application Logic'. We decided to perform necessary comparisons of molecules

(ingredients) on the application server and not in the database because the comparisons

concern only a subset of all molecules. This avoids overhead for finding a molecule in

the set of all molecules and reduces network traffic as well as database accesses. Hence,

this should be the faster alternative.

The algorithm works as follows: At first it is necessary to retrieve the required data from

the database. For every selected pharmaceutical in the set composition tab a set with all

associated molecules that are an ingredient of the pharmaceutical is constructed.

Moreover, additional sets are constructed for every molecule of a chosen

pharmaceutical. In the following we will refer to these molecules as 'primary

molecules'. The sets contain the adverse drug reaction (ADR) molecules associated with

the primary molecules. With the term 'ADR molecules' we refer to a molecule that has

an adverse drug reaction with a primary molecule. After the initialisation we iterate over

all pharmaceuticals chosen in the set composition tab and check whether any set of

ADR molecules of its ingredients intersects with the ingredients of another

pharmaceutical that was also selected in the set composition tab. Intersections other than

the empty set constitute detected adverse drug reactions because an ingredient of a

pharmaceutical that has an adverse drug reaction with an ingredient of another

pharmaceutical has been found. The algorithm is correct because we compare the

ingredients of all chosen pharmaceuticals with the ingredients of all other chosen

pharmaceuticals. The algorithm is finite because it stops after all possible checks. To

tweak the performance of the algorithm, we leveraged the condition that an adverse

drug reaction with molecule_id A and adr_molecule_id B is also stored as adverse drug

reaction with molecule_id B and adr_molecule_id A. Accordingly, it is sufficient to

check only for adverse drug reactions between pharmaceutical X and pharmaceutical Y

and it is not necessary to additionally check for adverse drug reactions between

pharmaceutical Y and pharmaceutical X. This cuts the number of conducted

comparisons in half. Runtime of the algorithm rises fast with the number of checked

pharmaceuticals. Nevertheless, since it is unlikely that users check dozens of

pharmaceuticals for adverse drug reactions, performance of the algorithm should be

sufficient.

Whenever an adverse drug reaction is determined the involved pharmaceuticals and the

according adverse drug reaction record (as a Hibernate mapping object) are stored in a

list. After the algorithm has finished a table containing the detected adverse drug

75

reactions is displayed. The table shows the gravity rating and the involved

pharmaceuticals for every detected adverse drug reaction. Users can access further

information regarding an adverse drug reaction with a pop-up window that is displayed

when they click on a row of the table. If no adverse drug reactions were found users are

notified and the table shows no entries. The pharmaceutical set compiled in the set

composition tab is stored for the duration of a session so that users can easily add

further pharmaceuticals without having to re-enter pharmaceuticals.

This functionality shows that the web application is suitable to offer more complex

services that aggregate information on multiple pharmaceuticals. As long as the required

data is available or can be made available, the web application can provide useful

additional information that cannot as easily be provided by patient information leaflets.

5.3.3 Listing of Side Effects

Figure 5-7 shows a further, previously unmentioned button 'Nebenwirkungen anzeigen'

in the set composition tab. This button is used to display all side effects of a set of

pharmaceuticals in a single tab. This might, for example, be useful if users experience

headaches and want to check if this can be a side effect of one pharmaceutical they are

currently taking.

We decided to place the buttons for the adverse drug reaction check and the listing of

side effects in the same tab and run both routines on the same set because users

probably want to run an adverse drug reaction check and display side effects for the

same set of pharmaceuticals. Such a set could, for example, be comprised of the

pharmaceuticals they are currently taking.

5.3.4 Display of Alternative Dosage Forms

Displaying alternative dosage forms seems to be easy: It is just necessary to iterate over

all pharmaceuticals in the same product group and select the distinct dosage forms.

However, this simple approach will not work. As described in chapter '5.2.1 Making the

Data Available', in our case pharmaceuticals are identified as products that have a

specific name, dosage form and strength. Additionally, a product group contains

products with same name and dosage form so that the products in a product group have

the same dosage form.

76

Therefore, we devised a different approach. Products are associated with ATC codes and

ATC codes basically specify the purpose of a pharmaceutical. Correspondingly,

pharmaceuticals that have the same ATC code have the same purpose and are possible

alternatives for each other. Hence, we determined the ATC codes of the primary product

and selected all other products with a fitting ATC code. The term 'primary product'

refers to the product for which alternative dosage forms should be determined.

Subsequently, we used a simple bucket sort algorithm to order the products with fitting

ATC codes by dosage form.

A problem of this approach is that products can be associated with multiple ATC codes

if they have multiple indications. If this is the case our approach will also include

dosage forms of pharmaceuticals that have only indications the user is not interested in.

Moreover, determination of the alternative dosage forms might take some time, if many

other products with matching ATC codes exist. However, this approach is useful

because users can determine alternative dosage forms. If they want to switch to a

pharmaceutical with another dosage form they just need to check if it is really suitable

for the desired application.

In order to avoid longer load times for drug information tabs, users can start the

determination of alternative dosage forms by clicking on a link in the dosage form

section of the drug information tab. Thus, alternative dosage forms are identified only

when necessary. Detected alternative dosage forms are displayed in a pop-up where

users can display the similar products that have a certain dosage form by clicking on a

dosage form in the pop-up. If users select one of the similar products a drug information

tab for this product is displayed.

5.3.5 Display of Pharmaceuticals with same Active Pharmaceutical Agents

A further additional functionality accessible from the drug information tab is a feature

that displays pharmaceuticals with the same active pharmaceutical agents as the primary

pharmaceutical. The term 'primary pharmaceutical' refers to the pharmaceutical

displayed in the drug information tab.

In order to find suitable pharmaceuticals, we collected the active pharmaceutical agents

of the primary pharmaceutical. Active pharmaceutical agents can be determined by

checking all associations between mi_product and mi_molecule of the respective

pharmaceutical for a moleculetype_id in mi_product_molecule that specifies the

77

molecule as active pharmaceutical agent of the corresponding pharmaceutical80.

Subsequently we selected all other pharmaceuticals with a set of active pharmaceutical

agents that is a superset of the set of active pharmaceutical agents of the primary

product. These products are the products we need to display because they have the same

active pharmaceutical agents as the primary product.

For primary products with only one active pharmaceutical agent, matching products

could easily be determined with an HQL/SQL query using the operator 'in' that checks

whether an object is an element of a set. With this operator we can check whether the

active pharmaceutical agent of the primary pharmaceutical is in the set of active

pharmaceutical agents of the currently examined pharmaceutical. However, the operator

'in' cannot be used to determine whether a set with a cardinality greater than 1 is a

subset of another set. As a solution, we dynamically added further conditions for all

other individual active pharmaceutical agents of the primary pharmaceutical that ensure

that each active pharmaceutical agent of the primary product is an active pharmaceutical

agent of the currently examined pharmaceutical.

The functionality can be accessed with a link in the ingredients section of the drug

information tab and matching pharmaceuticals are displayed in a pop-up window. This

way loading time of drug information tabs is not increased through the determination of

pharmaceuticals with the same active pharmaceutical agents and these pharmaceuticals

are only identified when it is necessary. If users select a pharmaceutical in the pop-up, a

drug information tab for this product is displayed.

5.3.6 Comparison of Pharmaceuticals

Users might want to compare two pharmaceuticals to choose the more fitting alternative

of two pharmaceuticals or might want to compare a pharmaceutical they have been

taking in the past to an alternative pharmaceutical they recently got prescribed. This

could be achieved by opening information on both pharmaceuticals in two different tabs

and comparing the pharmaceuticals by switching back and forth between the tabs while

reading the information provided on the pharmaceuticals. Viewing information on

pharmaceuticals in multiple tabs is already supported by the application. However, it

would be more convenient and user-friendly, if related information on both

80 The entities and relationships are illustrated in the entity relationship diagrams depicted in figure 5-4
and 7-2.

78

pharmaceuticals were accessible simultaneously and displayed coherently so that users

would not have to switch between tabs and would not have to identify/locate related

information themselves. Hence, we implemented a further version of the drug

information tab that offers such functionality.

At first we implemented a tab that enables users to select two pharmaceuticals they want

to compare. This tab is accessible from the panel 'Erweiterte Funktionen', which is

depicted in figure 5-8. After selection of the pharmaceuticals, users can open the tab for

pharmaceutical comparison by clicking on a button. From now on we will refer to the

tab for pharmaceutical comparison with the term 'drug compare tab'. The drug compare

tab is derived from the drug information tab so that useful functionality already

implemented in the class for the drug information tab can be used. This entails

functionality that handles the visibility of sections providing information on pharma-

ceuticals or that composes the labels displaying the information on pharmaceuticals.

Accordingly, only the layout management of the drug information tab and the handling

of the buttons that display alternative dosage forms or display pharmaceuticals with the

same active pharmaceutical agent need to be implemented in the class for the drug

compare tab.

Adoption of the methods handling user events of the previously mentioned buttons was

accomplished by passing the correct object representing a pharmaceutical to the routines

that determine alternative dosage forms or pharmaceuticals with the same active

pharmaceutical agent. In contrast to a drug information tab, a drug compare tab

obviously works with two pharmaceuticals instead of one.

The layout of the drug compare tab uses some methods of the drug information tab as

well. At the top of the page the drug compare tab offers the same navigation list as the

drug information tab. The questions heading groups of information on pharmaceuticals

are the same. Additionally, we display the same footer that provides the button to go to

the top of the page below each section of information. The differences to the drug

information tab are the sections that provide the information on the pharmaceuticals.

Instead of a single label we display two labels next to each other that provide the

information for the first and the second pharmaceutical. Hence, the design should not

cause confusion for users because it is consistent with the drug information tab.

Moreover, it allows users to view information on two pharmaceuticals in parallel so that

79

both pharmaceuticals can be easily compared to each other. Moreover, with the

configurations that are also used for drug information tabs, users can select only those

sections of information for display in which they are interested.

An approach that might have been even more convenient for users, would have been to

programmatically detect differences between the information provided for the two

pharmaceuticals. However, comparing the information on a character basis is not useful

because the information to be inferred from the strings of characters needs to be

compared. This is problematic because it depends on context, it is not clear how many

characters convey some information, different strings of characters can hold the same

information, and it is not known which information is contained in the strings.

Therefore, since the information on pharmaceuticals provided by the application is only

stored in strings, the database is not suitable to programmatically compare the provided

information. Devising and implementing an algorithm for semantic comparison of the

provided information probably entails enough challenges to be handled in a thesis of its

own. Furthermore, with our approach users do not have to trust the algorithm to make

Fig. 5-8: Final GUI and drug information tab design.

80

no mistakes like filtering relevant information that should be displayed. They can access

all the information that they can also view in the drug information tab and they can

determine the importance/relevance of the differences they identified and of the

provided information on their own.

5.3.7 Printing Information on Pharmaceuticals

Printing the information provided on pharmaceuticals can be useful as well. Information

can be printed in a well-readable font size and users can choose on their own which

sections of information are important to/relevant for them and should be printed.

Obviously, a printout should not contain GUI elements because they do not provide

relevant information and cannot be used on a sheet of paper. Accordingly, only the

information provided on pharmaceuticals and not the sidebars, header, tabsheet,

navigational elements in the drug information tab et cetera should be printed. This

requires a new layout of the provided information without all GUI elements. Offering a

HTML document with the respective information constitutes one possibility. However,

representation of the HTML document depends on the browser. Additionally, the print

functionality of the browser might also change the representation of the HTML

document. To avoid such problems and due to the fact that we had to reorganise the

information to be displayed in any case, we decided to offer the information in a file

with the Portable Document Format (PDF81) instead of printing it directly. PDF files are

designed to consistently represent documents independent of the creation or

representation environment.82 Thus, PDF files provide exactly the functionality we need

– a consistent environment independent representation of a document. To create PDF

files we used the iText83 library, which provides functionality for PDF creation and can

also parse HTML strings. To export the displayed information to a PDF file, users can

click on the PDF icon in the top-right corner of drug information tabs, which is depicted

in figure 5-8. Afterwards, functionality provided by the module 'Application Logic'

creates a PDF document using the iText library. Basically, creation of the PDF is

accomplished by parsing the HTML code representing the visible sections of

information on pharmaceuticals and writing it to the PDF file instead of using it as

81 For more information on the Portable Document Format see Adobe Systems Incorporated (2008).

82 See Adobe Systems Incorporated (2008), p. 1.

83 See 'http://itextpdf.com/itext.php' for more information on iText.

81

content of the labels in the drug information tab. The resulting PDF file is then made

available to users as download and contains the information currently visible in the

active drug information tab. Users can then either print the PDF document or use the

PDF document directly.

5.3.8 Explanation of Technical Terms

As mentioned in chapter '2.1.2 Features and Drawbacks of Patient Information Leaflets',

technical terms impede the comprehensibility of the provided information. The most

effective way to avoid problems caused by technical terms would be to replace them

with generally understandable expressions. However, this task should be performed by

medical professionals with sound knowledge of the technical terms to ensure that

correct substitutions are used and the meaning of the provided information is preserved.

Additionally, users might be familiar with technical terms used to provide information

that concerns them. For example, diabetics are likely to know that they should monitor

their blood sugar levels if they are told to monitor their Glucose level and such

information is probably irrelevant for other patients. Usage of technical terms might

even increase comprehensibility in such situations because of an increased precision.

Talking about shortness of breath instead of using the term 'asthma' would probably be

more confusing than helpful for people used to the term 'asthma'.

Therefore, we decided not to replace technical terms. Instead, we provide a link titled

'Fachbegriff erläutern' below each section of information in the drug information tab

next to the link that scrolls to the top of the page. This link can be seen on the bottom of

figure 5-8. This link opens a pop-up where users can enter the technical term that should

be explained. Afterwards, explanations for the technical term are provided in a new

browser view that displays a corresponding entry on Wikipedia. This way users

uninterested in explanations for a technical term cannot be bothered with unnecessary

explanations. Moreover, users have access to more explanations than the web

application could provide on its own. Furthermore, it is likely that at least one of the

links will be displayed if users need an explanation for a technical term. Displaying the

link in the header would, for example, be less convenient because users would have to

go to the top of the page every time they want to look something up. The functionality

could be easily adopted to use another source for explanations, like an own lexicon of

technical terms or a different external encyclopaedia instead of Wikipedia/in addition to

Wikipedia. We decided to link to Wikipedia because links corresponding to technical

82

terms can be easily determined and it offers information for a wide spectrum of terms.

Development of an own lexicon cannot easily meet the breadth and depth offered by

Wikipedia and should also be written by medical professionals for the previously

mentioned reasons.

In order to avoid complications with technical words in the texts that provide

application related information in the tooltips and the help tab, we tried to avoid

technical terms and Anglicisms and used common alternatives. While these might seem

odd to users adept at using online applications, which are mostly in English,

inexperienced users, which need explanatory information the most, cannot be confused

by technical terms in the explanatory texts.

5.3.9 Further changes/additions

A further additional feature can be seen in figure 5-8: An image that illustrates the

packaging, blister, and tablet is provided between the navigation list and the PDF icon.

This is, for example, useful for the identification of pharmaceuticals. If users find an

unmarked red tablet, they might guess that it is a neo-angin tablet and can verify this

guess with the web application. Since we did not have access to pictures for all

pharmaceuticals we made only the one example picture, which is displayed in every

drug information tab. With a lot of work, similar pictures could be made for every

pharmaceutical and be stored in the database so that a picture could be provided for

every pharmaceutical to support identification of pharmaceuticals.

Another advantage of such images is that they bring more colour to the drug

information tab and liven up the design. This endeavour is further supported by the

increased font size and changed colour of the drug information section headings as

mentioned in chapter '5.1.2 Realisation of Requirements'. Additionally, we changed the

design of the button for search initiation in the panel 'Medikamenten-Suche' to an icon

of a magnifying lens. The new button can be seen in figure 5-8 as well as two further

new buttons in the header. These buttons use also icons to convey to users that they can

be used to open the home tab and the help tab. Hence, we made a few changes to spice

up the GUI while still maintaining a conservative, legitimate, professional and

trustworthy appearance. A too colourful design of a web application providing medical

information might lead users to believe that the web application is unreliable and not

83

trustworthy. Still, the header should be redesigned as well and display some kind of

banner or logo instead of just the simple plain heading 'Medinfo', but this is a job for an

designer and not important for the prototype.

For users that want/need to contact the owner/operating authority of the web application

in order to report mistakes in the provided information or ask a question about the web

application we offer a contact pop-up that provides the necessary information.

Additionally, we extended the tab providing information on the sources of the data and

added some text explaining that users will not be profiled and collected data will not be

applied beyond the scope of the application. The web application does not really collect

information on the users, but it needs to handle the data necessary to process user

events. Additionally, the log files of the application server and the database might store

some information. However, these logs are necessary for maintenance and monitoring

of performance. Hence, it would be inaccurate to tell the user that no information is

stored.

5.3.10 Realisation of Requirements

With the implementation of the additional functionality and associated adoptions we

realised the remaining relevant requirements. A search for a pharmaceutical with a

partial name as well as the pop-up for selection of pharmaceuticals support the

functionality demanded in requirement 02-02-03-01 and offer convenient ways for users

to find specific pharmaceuticals without knowing the exact names. Additionally, the

pop-up is useful for other features where the selection of pharmaceuticals is required.

Checking a set of pharmaceuticals for adverse drug reactions (requirement 02-03-01-01)

is realised with an appropriate algorithm and a tab for the composition of the set of

pharmaceuticals. Moreover, the set composition tab makes functionality required by

requirement 02-03-01-02 available that lists all side effects of the composed set of

pharmaceuticals. Requirement 01-01-04-02 and 02-01-01-01 are realised by

corresponding features that gather the required information and display alternative

dosage forms, similar pharmaceuticals with alternative dosage forms, and

pharmaceuticals with the same active pharmaceutical agents as the currently displayed

pharmaceutical in pop-up windows. Comparison of similar pharmaceuticals, as

mentioned in requirement 02-03-01-04-02 is facilitated with a tab derived from the drug

information tab that displays sections of information for two pharmaceuticals in

parallel. Alternatively, pharmaceuticals can be compared by viewing them in different

84

tabs. Printing of pharmaceuticals, as stated in requirement 02-03-05, is supported with a

PDF export of the visible information in the currently viewed drug information tab.

Requirement 01-05-03 that requests explanations for technical terms is realised with a

pop-up that links to explanations for entered technical terms on Wikipedia. As

postulated in requirement 01-05-01 we used common wording in the explanatory text.

To support identification of pharmaceuticals (requirement 02-03-02), we demonstrated

with a sample picture how pictures could be used to help with the identification of

pharmaceuticals. In combination with icons and a changed colour of headings in drug

information tabs, the pictures were also used to make the GUI design more attractive as

mentioned in requirement 03-04-02. In accordance with requirements 02-04-01 and

03-01-02-02 the web application informs users how they can contact the operating

authority and informs them about the sources as well as the usage of the

provided/collected data.

Hence, we implemented features for all requirements except of requirement

01-03-01-02-04 that proposes to guide users through the application instead of offering

them many different controls and settings. A problem with guiding users through the

application is that it is easy to annoy users by asking them questions or asking them for

configurations they are not interested in. Additionally, the home tab offers a short

introduction and the possibility to configure the application. Furthermore, the GUI

elements offer instructions for their utilisation with informative labels or tooltips and

further help can be obtained from the help tab. Moreover, inexperienced users can use

the application in the default view that offers only the basic functionality so that users

should be easily able to comprehend the operation of the application and no guide is

required. Later on, they can access and activate further functionality in the user interface

with self-explanatory buttons or change the application configuration in the home tab.

Accordingly, the application serves as an implicit guide through the realisation of other

requirements and no extra feature that guides users has to be implemented.

85

ID Requirement Realisation

01-01-04-02 Display alternative dosage
forms of a pharmaceutical.

Routine that obtains the necessary
information, pop-up windows that
display the results

01-03-01-02-04

Guide inexperienced users
through the application rather
than offering them many
different controls and settings.

Instructions on home tab, different
views, informative texts in GUI
elements, tooltips, et cetera

01-05-01
Use common wording in
explanatory text.

Use of common wording in
explanatory text

01-05-03 Explain technical terms. Pop-up for entry of technical terms
that links to Wikipedia

02-01-01-01

Display pharmaceuticals with
same active pharmaceutical
agent as the currently displayed
pharmaceutical.

Routine that obtains the necessary
information, pop-up window that
displays the resulting
pharmaceuticals

02-02-03-01
Find specific pharmaceuticals
without knowing the exact
names.

Pop-up for selection of
pharmaceuticals, search for
pharmaceuticals with a partial name

02-03-01-01
Check a set of pharmaceuticals
for adverse drug reactions.

Set composition tab, appropriate
algorithm

02-03-01-02 List all side effects of a set of
pharmaceuticals.

Set composition tab, listing of side
effects in a tab

02-03-01-04-02
Compare similar
pharmaceuticals.

Drug compare tab, displaying
pharmaceuticals in different tabs

02-03-02 Support identification of
pharmaceuticals.

Picture of pharmaceutical

02-03-05

Provide functionality to print
the selected information of
currently displayed
pharmaceutical.

PDF export

02-04-01

Inform users how the
owner/operating authority of
the web application can be
contacted.

Provision of corresponding
information

03-01-02-02

Inform users that they will not
be profiled and that collected
data will not be applied beyond
the scope of the application.

Provision of corresponding
information

03-04-02 Make GUI design more
diversified/attractive/appealing

Picture of pharmaceutical, icons,
changed colour of headings

Tab. 5-4: Summary of requirements: additional functionality/associated adoptions

86

5.4 Concluding remarks

The preceding elaborations serve as a long answer to the third research question: How

can the web application be realised? Our chosen approach started with the determination

of relevant aspects and framework conditions as well as the development of a basic

understanding of the proposed web application. This led to a set of objectives that drew

an outline of the web application and were incorporated in the GUI prototype/the

preliminary draft of the application. Afterwards, interviews were conducted to validate

and improve the concept with user input/feedback and to elicit requirements for the web

application. The gathered requirements were then sorted, consolidated, analysed and

filtered. Subsequently, the requirements were prioritised and those mentioned most

often were chosen for realisation. Thereafter, we developed a suitable basic design and

architecture and selected fitting supportive technologies for implementation and

deployment of the web application.

The actual implementation of the web application was then accomplished in three major

phases. At first, we implemented the GUI. The user feedback and requirements

collected in the interviews led to many improvements to the GUI of the GUI prototype.

Yet, we could reuse and adopt large parts of the GUI prototype code and, thus, ease the

implementation process by benefiting from previous efforts. In the next phase, we

assembled the required information on pharmaceuticals in a database and implemented

the necessary functionality for data retrieval and processing. Additionally, we integrated

the database related functionality into the GUI so that, at the end of this implementation

phase, the web application could serve its basic objective: enabling users to search and

view information on pharmaceuticals usually provided in patient information leaflets.

The final phase was dedicated to the implementation of additional functionality and the

realisation of the remaining relevant requirements. While the previous implementation

phases were necessary to make the web application operational, the third

implementation phase led to the realisation of most of the features that leverage

opportunities of providing the information with a web application to generate benefits

for users.

87

6 Final Considerations and Remarks

Purpose of this chapter is to assess the resulting prototype as well as its development

process and to propose further enhancements.

6.1 Achievement of Objectives

The motivation for development of the prototype was to demonstrate that a web

application is suitable to provide information in patient information leaflets and offer

additional functionality without exhibiting the drawbacks of patient information leaflets.

As described in chapter '2.1.2 Features and Drawbacks of Patient Information Leaflets',

patients are troubled by the content, readability, and comprehensibility of patient

information leaflets. Insufficiencies regarding the content of patient information leaflets

are provision of too much content and too much irrelevant information. In the web

application, we solved this problem by allowing users to select which information

should be displayed so that users can decide which information is or is not relevant.

Along with the provision of too much information, the small font size and the confusing

structure, which impedes discovery of desired information, deteriorate the readability of

patient information leaflets. The web application prevents these deficits by offering an

adjustable font size, a well-arranged layout, which bundles related information, and the

navigation header that allows users to bring desired information into view with a single

click. Furthermore, a feature that exports the visible patient information leaflet informa-

tion to a PDF document enables users to benefit from the refined representation offline.

Provision of the information with a web application is not the right approach to solve

the comprehensibility troubles. Inadequate, formal language and usage of technical

terms are problems rooted in the data itself and should be solved by improving the data

instead of devising workarounds and manipulating the data to make it presentable.

However, we improved comprehensibility a little by enabling users to retrieve explan-

ations for technical terms. Additionally, by using common expressions and terms in the

application-related explanatory information, we avoided creating similar problems

ourselves. Data related issues will be discussed in more detail in chapter '6.5.1

Improvement of Data Quality'.

88

A better presentation of the information is not the only advantage of providing the

information in patient information leaflets with a web application. While a patient

information leaflet is focused on a single pharmaceutical, the web application can

process and aggregate information on multiple pharmaceuticals. The developed

prototype demonstrates this with a few features: Pharmaceuticals can be searched by

different parameters. Besides searching for a pharmaceutical to view the patient

information leaflet information, users can, for example, also use the search functionality

to find and list pharmaceuticals for a specific field of application. Pharmaceuticals can

also be searched by partial names, which will, for example, be useful if users do not

know the exact name. Moreover, the application enables users to find alternative dosage

forms of a pharmaceutical by listing all dosage forms of similar pharmaceuticals.

Additionally, pharmaceuticals with the same active pharmaceutical agents as another

pharmaceutical can be easily determined.

Furthermore, the application provides support for users who take multiple

pharmaceuticals in parallel: The web application presents information on all

pharmaceuticals in a consistent layout. Retrieving the desired information from multiple

patient information leaflets, on the other hand, is less convenient and comfortable

because they are likely to be structured in different ways so that identification of the

desired information is impeded. Through the support for tabs, the web application

additionally enables users to switch efficiently between information on different

pharmaceuticals. A further feature that displays information on two pharmaceuticals in

parallel and arranges congruent sections of information for both pharmaceuticals next to

each other can be utilised to compare two pharmaceuticals. Users can also check a set of

pharmaceuticals, which could, for example, be comprised of all the pharmaceuticals

they are taking, for adverse drug reactions or display all associated side effects in a

single tab. These features satisfy needs identified and mentioned most often in the

interviews. Further aggregation functionality can be added as long as the database

provides the required information or can be extended in an adequate way.

89

6.2 Patient-Friendliness

The web application should be beneficial for patients, hence, it should provide

functionality and information patients need. Additionally, it should be easy as well as

comfortable to use and should not require special training or skills.

In chapter '6.1 Achievement of Objectives', we already mentioned that we tried to avoid

problems patients associate with patient information leaflets to enhance the provision of

information in patient information leaflets. Furthermore, the conducted interviews were

useful to improve the alignment of the application with patients expectations and needs.

Through the interviews, we were able to identify expectations and requirements

regarding the application and gathered feedback on usability, necessary instructions, and

user preferences. A problem, we identified in the interviews, is that users have a varying

proficiency in using web applications. Less skilled users are easily confused by too

many possibilities and options. On the other hand, more skilled users are easily bothered

with an inefficient GUI in which the required functionality is not directly accessible. To

satisfy most kinds of users, we implemented a modular GUI that users can configure to

their liking. Inexperienced users can start with a basic view and enable further GUI

components step by step/when they need to. The possible configurations are displayed

in combination with introductory information on usage and purpose of the application at

application startup. In combination with the tooltips, instructive information in the tabs,

and the help tab users are supplied with sufficient information to be able to use the

application.

Hence, the application can be considered patient-friendly since we provide functionality

elicited from prospective users and the application is easy to use and can be adopted to

the needs of users.

6.3 Chosen Approach

The chosen approach can be deemed suitable because it took needs of users/patients into

account and led to a proper, working prototype within the given time frame. Thus, it led

to the accomplishment of our objective. Establishment of objectives for the preliminary

draft and the implementation of the GUI prototype were useful to become acquainted

with the problem and subject area as well as the Vaadin framework and the Java

programming language. The interviews were important to validate and improve the

90

initial solution, to elicit further functionality desired by potential users, and to determine

usability problems. Being able to interact with interviewees and observe their

interaction with the GUI prototype was an additional advantage of the interviews. It

enabled us to ensure that interviewees understood the questions, stayed on topic, and

could clarify their responses and to address potential problems that were observed by us

but not mentioned by the interviewees. However, conducting the interviews and

especially the following analysis created a lot of effort. This might be improved by

noting requirements directly during the interview instead of listening to recordings and

extracting requirements later on. On the other hand, such approach would probably lead

to omission of requirements and worsen the interview quality because the interviewer

needs to focus more on taking notes.

Normally, the design and architecture should be specified in more detail, but in our case

this was not necessary since we did not have to coordinate multiple developers, the

modular architecture did not lead to many interdependencies, and it did not cause

problems during implementation. Implementing the user interface first was beneficial

because, this way, a working version of the application could always be tested.

Additionally, further functionality could be integrated and tested step by step in its

targeted environment and it was not necessary to integrate a lot of features at once,

which could cause unforeseen problems with many potential sources.

6.4 Comparison with Similar Services

We found two freely accessible online services that offer similar functionality:

PhamNet.bund84 and GELBE LISTE PHARMINDEX85.

PharmNet.bund offers patient information leaflets as download. These contain the same

information as those distributed with pharmaceuticals but have an improved readability

because of a larger font size. Hence, using PharmNet.bund is not much different from

using a patient information leaflet and it does not provide additional services related to

the information in patient information leaflets and cannot be used to view the

information in a browser.

84 See 'http://www.pharmnet-bund.de/dynamic/de/am-info-system/index.html' for further information.

85 See 'www.gelbe-liste.de' for further information.

91

GELBE LISTE PHARMINDEX is more similar to our application and enables users to

search for pharmaceuticals and display patient information leaflet information in the

browser. The provided information is similar to the information our application provides

since we use the same database. Without a user account GELBE LISTE

PHARMINDEX provides only information on dosage form, available package sizes,

ingredients, ATC code, and an image of the pharmaceutical in its dosage form.

However, further information and functionality can be accessed by creating a user

account. With a user account the same information on pharmaceuticals as our

application provides can be accessed. Additionally, pharmaceuticals link to

pharmaceuticals with a matching active pharmaceutical ingredient and the price of a

pharmaceutical can be compared with prices of similar pharmaceuticals.86

The main difference to our prototype is that GELBE LISTE PHARMINDEX targets

medical professionals instead of patients. Besides not requiring a user account our

prototype has some advantages. First of all, users can choose which information they

want to see so that irrelevant information is not displayed. As depicted in figure 6-1,

GELBE LISTE PHARMINDEX lists only headings and strings of information below

each other. With our layout the information is arranged more clearly because only the

selected information is displayed and information with related content is ordered in

groups with helpful and meaningful questions as heading. Additionally, readability is

improved because the layout is less dense and information is structured with lists and

tables wherever it is useful, reasonable, and possible. The prototype also enables users

to change the font size and configure the GUI to their liking. To support users, the

prototype provides help information regarding the usage of the application as well as the

meaning of the different sections of information and can link to explanations for

technical terms. Moreover, the prototype offers more functionality that potential users

deemed useful: Users can efficiently switch between information on multiple

pharmaceuticals by using the tabs. Two pharmaceuticals can be compared in a single

tab. A set of pharmaceuticals can be checked for adverse drug reactions. Side effects can

be displayed for a set of pharmaceuticals. Furthermore, alternative dosage forms of a

pharmaceutical can be easily determined.

86 Screenshot of web page 'http://www.gelbe-liste.de'. Taken on 27.01.2012.

92

In short, the developed prototype is more useful for patients because it is designed for

patients and not for medical professionals. Thus, it exhibits an improved usability, its

operation is more intuitive, and it does a better job mending the troubles patients have

with patient information leaflets, as described in chapter '6.1 Achievement of

Objectives'.

Fig. 6-1: Layout of GELBE LISTE PHARMINDEX86

93

6.5 Further Research

We developed a prototype for the patient-friendly provision of information in patient

information leaflets in a web application. Besides requiring tasks like further validation

with user feedback or realisation of the adoptions necessary to run the application in the

target environment, the prototype can serve as foundation for further improvements and

considerations. In the following we will briefly propose some possibilities.

6.5.1 Improvement of Data Quality

While the current quality and quantity of the data is sufficient for the purposes of the

prototype there is room left for improvement: For live operation a satisfying amount of

information should be provided for all pharmaceuticals in the database. In the prototype

only roughly a quarter of the pharmaceuticals are associated with content for most

sections of information in the drug information tab. This coverage could be improved by

identifying data associated with pharmaceuticals that is also suitable for other

pharmaceuticals that are not linked with the data. The prototype provides, for example,

a satisfying amount of information for 'Aspirin 0.5g Tbl. kohlpharma' and only basic

information for 'Aspirin 0.5g Gerke Tbl.'. The information provided for the 'kohlpharma'

version is probably also suitable for the 'Gerke' version. If such relationships could be

identified in a reliable way the coverage of the provided information could be easily

increased. In order to avoid providing wrong information, such relationships should be

identified or approved by medical professionals.

Updating the data in the database and adding further data on pharmaceuticals is an

interesting aspect as well. The web application could be supplemented with a further

application for data input. Such functionality could, for example, be designed in a way

that allows to determine additional semantic aspects of the entered information. It

would, for example, be useful to associate side effects with their frequency of

occurrence in order to enable users to select only side effects with a certain frequency

for display. Another example is associating taking instructions with parts of the day.

This would be useful to display icons that visualise the information and illustrate that a

pharmaceutical should be taken in the morning, in the morning and in the evening, after

a meal, et cetera. It would also be useful to implement relationships that can be used to

display informative icons/information at the top of the drug information tab, like 'Do not

operate heavy machinery' or 'Do not use during pregnancy'. With the current database

94

we can only inform the user that the application provides some information for a certain

topic, but we cannot deduce whether the information is important or relevant for the

user. Hence, in our case, icons or pictograms are not really useful because users already

see whether the sections contain text.

In any case, added information needs to originate from a reliable source or should be

verified by experts to ensure that the application provides correct information.

Accordingly, programmatic improvement of the data is complicated because the

information depends on context and is provided by ambiguous words so that it is

difficult to ensure that an algorithm performs reliable and correct transformations. Yet,

the sheer mass of necessary information calls for an efficient approach. A possible

solution would be to obtain the required information from the respective pharmaceutical

companies in electronic form and to implement input routines that update the database

accordingly. However, some companies might be reluctant to spend the additional effort

for making the information available. A crowd sourcing approach is a further possible

solution. Wikipedia is a good example that such an approach can work. Nevertheless,

crowd sourcing is problematic in combination with medical information because

provision of wrong information could lead to serious consequences. A crowd sourcing

approach requires definitely an additional mechanism that ensures the reliability of the

information. This could be achieved by requiring a certain amount of approved experts

to confirm new or updated entries prior to publishing them.

6.5.2 German Healthcare Telematics Infrastructure

Integration of the web application with the German healthcare telematics infrastructure

that is currently being established and the electronic health card currently being issued

to German citizens could lead to further promising applications of the prototype. The

application could, for example, retrieve information for users who identify themselves

with their electronic health card and offer personalised information. The application

could, for example, automatically offer information on the pharmaceuticals a user is

taking. Special medical conditions of users could be considered by the application so

that users can, for example, be informed that taking the currently viewed pharmaceutical

is not advisable because of a medical condition they have. Users could also be informed

that the currently viewed pharmaceutical has known adverse drug reactions with

pharmaceuticals they are currently taking. Furthermore, physicians could supplement

the presented information with additions for individual patients like an alternative

95

dosage pattern, symptoms a patient should look for, or just substantiate why a patient

should take a certain pharmaceutical. If patients want to use such functionality and

identify themselves, it will also be possible to offer further functionality that requires

user accounts. Users could for example define a preferred view and a set of tabs that

should be displayed on application startup. However, such functionality raises data

security concerns that need to be managed. It would, for example, be necessary to

ensure that patients and others can only access the information they provided/the

personalised information provided for them.

6.5.3 Different Perspectives

The application should also be evaluated from different perspectives. It would be

worthy of consideration to determine and weigh the advantages and disadvantages of

providing easier access to information on pharmaceuticals. The application could, for

example, improve self medication or encourage undesirable forms of self medication.

Compliance might be improved through the application because of easier access to

information or patients might get scared for the same reasons.

A legal perspective is interesting as well. It should, for example, be clarified who is

responsible if a user harms himself by mistake because he followed the taking

instructions for the wrong pharmaceutical. A further interesting aspect is whether the

operating authority of the web application, which offers the information, or the source,

which created the information, is liable for providing wrong information. A related

aspect is how users are best informed that wrong information might be provided and

that they should take this into account.

Especially when personalised functionality is added security aspects of the application

should be considered to ensure that third parties cannot gain unauthorised access to

information on users/patients. Security measures to ensure that the provided information

cannot be manipulated should be specified as well. Currently, the database can be

configured to allow access only for nodes in the local network, but this gets more

complicated if servers in different geographical locations are used. Moreover, it might

be reasonable to protect the individual nodes against physical manipulations.

The prior suggestions for further research touch some aspects that came to mind while

working on the thesis. The developed prototype can possibly serve as foundation for

many more related and supplemental projects.

96

Bibliography

Adobe Systems Incorporated (2008)

Adobe Systems Incorporated: Document management – Portable document

format – Part 1: PDF 1.7. http://www.adobe.com/devnet/acrobat/pdfs/

PDF32000_2008.pdf, retrieved on 24.01.2008

Apache Software Foundation (n.d.)

Apache Software Foundation: The Apache Tomcat Connector – Generic HowTo.

Workers HowTo. http://tomcat.apache.org/connectors-doc/generic_howto/

workers.html, retrieved on 23.10.2011

Bäumer et al. (1996)

Dirk Bäumer, Walter R. Bischofberger, Horst Lichter, Heinz Züllinghoven: User

Interface Prototyping – Concepts, Tools, and Experience. In: IEEE Computer

Society (publ.): Proceedings of the 18th International Conference on Software

Engineering (ICSE '96), 25-30 March, 1996, Berlin. Washington, DC, USA

1996, p. 532-541

Bundestag/Bundesrat (1976)

Bundestag/Bundesrat: Arzneimittelgesetz in der Fassung der Bekanntmachung

vom 12. Dezember 2005 (BGBI. I S. 3394), das zuletzt durch Artikel 1 der

Verordnung vom 19. Juli 2011 (BGBI. I S. 1398) geändert worden ist. n.p. 1976

Cohene, Easterbrook (2005)

Tira Cohene, Steve Easterbrook: Contextual Risk Analysis for Interview Design.

In: IEEE Computer Society (publ.): Proceedings of the 13th IEEE International

Conference on Requirements Engineering (RE '05), 29 August – 2 September,

2005, Paris, France. Washington, DC, USA 2005, p. 95-104

Davis et al. (2006)

Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, Ana M. Moreno:

Effectiveness of Requirements Elicitation Techniques: Empirical Results

Derived from a Systematic Review. In: IEEE Computer Society (publ.):

Proceedings of the 14th IEEE International Requirements Engineering

Conference (RE '06), 11-15 September, 2006, Minneapolis/St. Paul, MN, USA.

Washington, DC, USA 2006, p. 179-188

97

Deutsche Telekom (2011)

Deutsche Telekom: Sicherheitsreport 2011. http://www.download-telekom.de/

dt/StaticPage/10/84/08/T-Systems_Sicherheitsreport_2011.pdf_1084082.pdf,

retrieved on 19.09.2011

European Commission (2009)

European Commission: Guideline on the Readability of the Labelling and

Package Leaflet of Medicinal Products for Human Use. Brussels, 2009

Fuchs et al. (2007)

Jörg Fuchs, Stefanie Banow, Nancy Görbert, Marion Hippius: Importance of

Package Insert Information in the European Union. In: Pharmazeutische

Industrie. no. 2, vol. 69, 2007, p. 165-172

Fuchs, Hippius, Schaefer (2003)

Jörg Fuchs, Marion Hippius, Marion Schaefer: Gestaltung von

Packungsbeilagen für Arzneimittel. In: Pharmazeutische Industrie. no. 4, vol. 65,

2003, p. 302-306

Grönroos (2011)

Marko Grönross: Book of Vaadin. 4th edition. https://vaadin.com/download/

book-of-vaadin/current/pdf/book-of-vaadin.pdf, retrieved on 07.12.2011

Hove, Anda (2005)

Siw E Hove, Bente Anda: Experiences from Conducting Semi-Structured

Interviews in Empirical Software Engineering Research. In: IEEE Computer

Society (publ.): Proceedings of the 11th IEEE International Software Metrics

Symposium (METRICS '05), 19-22 September, 2005, Como, Italy. Washington,

DC, USA 2005, p. 23-32

IEEE (1998)

IEEE (publ.): IEEE Recommended Practice for Software Requirements

Specifications. IEEE Std 830-1998. New York, NY, USA 1998

IEEE (2010)

IEEE (publ.): Systems and software engineering – Vocabulary. ISO/IEC/IEEE

24765-2010(E). New York, NY, USA 2010

98

Kaletsch, Sunyaev (2011)

Alexander Kaletsch, Ali Sunyaev: Privacy Engineering: Personal Health

Records in Cloud Computing Environments. In: no publ.: ICIS 2011

Proceedings, 04-07 December, 2011, Shanghai, China. n.p. 2011, paper 2

Nink, Schröder (2005)

Katrin Nink, Helmut Schröder: Zu Risiken und Nebenwirkungen: Lesen Sie die

Packungsbeilage?. Bonn 2005

Oracle (2011)

Oracle (publ.): MySQL 5.5 Reference Manual. Including MySQL Cluster 7.2

NDB Reference Guide. revision 27785; Redwood City, CA, USA 2011

Rupp (2002)

Chris Rupp: Requirements-Engineering und -Management. Professionelle,

iterative Anforderungsanalyse für die Praxis. 2nd edition, München, Wien, 2002

Sommerville (2007)

Ian Sommerville: Software Engineering. 8th edition, München, 2007

Sun Microsystems (2001)

Sun Microsystems (publ.): Java Servlet Specification, Version 2.3. JSR 53. Palo

Alto, CA, USA 2001

Zhang (2000)

Wensong Zhang: Linux Virtual Server for Scalable Network Services. In: no

publ.: Proceedings of the Linux Symposium, 19-22 July, 2000, Ottawa. n.p.,

2000, p. 1-10

99

7 Appendix

Appendix

List of objectives

Category # Objective

Data

1 Make relevant information in patient information leaflets
available for the user.

12 Do not collect and store data that is not relevant for the display of
information in patient information leaflets.

13 Use only trustworthy sources of information.

14 Protect data against tampering.

16 Inform users about data sources and potential risks associated
with the application.

Interface
Design

Principles

5 Structure the layout according to user wishes and needs.

6 Improve structuring with accentuated and consistent formatting
of headings.

8 Avoid or explain technical terms or notations.

9 Obtain readability with clear contrast between text and
background colour.

10 Provide assistance for inexperienced users.

11 Avoid hindering or slowing down experienced users.

Functionality

2 Provide aggregation functionality for information in patient
information leaflets.

3 Provide refinement functionality for information in patient
information leaflets.

4 Offer functionality for the selection of the displayed information.

7 Provide zoom capabilities or a sufficient font size.

15 Provide a mechanism to report potentially wrong information.

Application

Design

17 The web application needs to be accessible around the clock.

18 Response times should be short (almost unnoticeable).

19 The architecture needs to be scalable.

20 The architecture needs to be expandable.

Tab. 7-1: List of objectives on which the preliminary draft is based.

100

Interview Guide

Purpose of the interview guide is to guide the interviewer in the interview. It depicts the

general structure of the interview and suggests questions that can be rephrased to adapt

to the needs of the interviewee. Additionally, the interview guide is useful to take short

notes during the interview and to associate the notes directly with the questions. The

interview was conducted in German, therefore, the interview guide is in German too.

A) Einführung

I. Begrüßung/Vorstellung

II. Dank für Teilnahme

III. Bitte um Erlaubnis zur Aufzeichnung

IV. Beschreibung der Arbeit

Entwicklung einer Web-Applikation zur patientenfreundlichen

Darstellung von Informationen in Beipackzetteln von Medikamenten

V. Beschreibung des Zweckes des Interviews

(1) Erhebung von Anforderungen/Ideen, um die Webseite

benutzerfreundlicher zu gestalten

Anforderung: Bedingung oder Fähigkeit, die ein Benutzer benötigt,

um ein Problem zu lösen oder ein Ziel zu erreichen.

1. Keine weiteren Einschränkungen

2. Keine Implementierungsdetails

3. Korrekt

4. Eindeutig

5. Komplett

6. Konsistent

7. Verifizierbar

(2) Um später Anforderungen genau aufschreiben zu können, werde ich

teilweise um Detaillierung einiger Aussagen bitten

(3) Es gibt keine falschen Antworten

101

(4) Anonymität, Vertraulichkeit

(5) Bitte um freie Meinungsäußerung

(6) Ungefährer Zeitaufwand für das Interview: 60-90 Minuten

VI. Beschreibung des Ablaufs des Interviews

(1) Allgemeine Fragen zur Web-Applikation

(2) Vorstellung eines auf meinen Annahmen basierenden Prototypen

(3) Weitere Fragen zur Anwendung mit Berücksichtigung des GUI-

Prototypen

(4) Möglichkeit für weitere Kommentare, Ideen oder Anmerkungen

VII.Allgemeine Daten zur Beschreibung der Gruppe der Befragten

(1) Geschlecht

(2) Alter

(3) Beruf

(4) Internetnutzung

(a) gar nicht

(b) wenn ich muss

(c) wenn es die bessere Alternative ist

(d) so oft es geht

(e) anderes

B) Fragen vor Präsentation von GUI-Prototyp

I. Welche Probleme gibt es bei der Benutzung von Beipackzetteln für

Medikamente?

(1) Wann haben Sie zuletzt einen Beipackzettel gelesen?

(2) Hat Sie dabei etwas gestört?

II. Wie könnten die Probleme durch eine Web-Applikation zur Darstellung von

Informationen in Beipackzetteln behoben werden?

III. Wie stellen Sie sich die beschriebene Web-Applikation vor?

102

IV. Was müsste die Web-Applikation leisten, damit diese benutzt wird?

(1) In welchen Situationen kann die beschriebene Web-Applikation nützlich

sein?

(2) Szenario: Ein Patient möchte vor der Einnahme eines Medikamentes die

Web-Applikation nutzen, um sich über ein Medikament zu informieren.

(a) Wie sollten die Informationen dargestellt werden, um den Patienten

dabei zu unterstützen?

(b) Wie sollten die gesuchten Informationen ausgewählt werden?

(c) Mit welchen weiteren Maßnahmen könnte man den Patienten

unterstützen?

(3) Welche zusätzliche Funktion neben der reinen Darstellung von

Informationen in Beipackzetteln können Sie sich vorstellen?

C) Präsentation von GUI-Prototyp

I. Start des Prototypen auf PC des Befragten oder alternativ auf eigenem

Laptop und parallel Erklärungen zu dem Prototyp

(1) http://alturl.com/j6t2e

(2) Basiert auf meinen Ideen zur Gestaltung der Web-Applikation

(3) Soll ein Gefühl für die Richtung der Entwicklung vermitteln

(4) Dient nur zu Testzwecken

(5) Stellt nur Testinformationen dar

(6) Man kann bei der Benutzung nichts zerstören

II. Aufforderung, die Web-Applikation zu benutzen bzw. ein Gefühl für diese

zu bekommen

(1) Erkundung der Web-Applikation nach Belieben

(2) Aufforderung zum Stellen von Fragen, falls Probleme auftreten

(3) Falls der Befragte zögerlich mit der Web-Applikation interagiert

(a) Aufforderung, Informationen zu einem Medikament aufzurufen

(b) Aufforderung, die unterschiedlichen Funktionen zu testen

103

(c) Fragen, ob die einzelnen Funktionen der GUI-Komponenten erkannt

werden.

Beispiel: Wie würden Sie vorgehen, wenn sie Informationen zu

einem Medikament aufrufen möchten?

D) Fragen nach Präsentation von GUI-Prototyp

I. Abweichungen zwischen GUI-Prototyp und vorherigen Antworten

Entspricht der GUI-Prototyp Ihrer Vorstellung, bevor Sie den Prototyp

gesehen haben?

(a) Was haben Sie sich anders vorgestellt?

(b) Was sollte anders gemacht werden?

(c) Was kann weggelassen werden?

II. Spezifische Fragen zu Aspekten der Anwendung

(1) Kann man mit dem Prototypen benutzerfreundlich Informationen zu

Medikamenten aufrufen?

(a) Szenario: Ein Patient nutzt die Web-Applikation, um sich über

Medikamente zu informieren. Nach ein paar Sitzungen entscheidet er

aber doch lieber Beipackzettel zu lesen.

1. Was sind die wahrscheinlichsten Dinge, die dem Patienten an der

Web-Applikation nicht gefallen?

2. Wie kann man diese vermeiden?

(b) Wenn Sie an die Benutzerführung in anderen Programmen, die Sie

benutzen, denken: Fallen Ihnen dann Maßnahmen ein, wie man die

Benutzerführung verbessern könnte?

(c) Gibt es Funktionalität, die Sie vermisst haben?

104

(2) Aggregation und Aufarbeitung

(a) Aggregation von Informationen kann als die Zusammenfassung von

einzelnen Informationen beschrieben werden.

Inwiefern kann die Aggregation/Zusammenfassung von

Informationen im Rahmen der Web-Applikation hilfreich sein?

• Beispiel: Liste aller Medikamente, die bei Kopfschmerzen

helfen

• Beispiel: Anzeige der verschiedenen Darreichungsformen von

Aspirin

• Beispiel: Auflistung der Nebenwirkungen aller Medikamente,

die ein Patient parallel einnimmt

(b) Wie könnten die dargestellten Informationen verbessert werden?

1. Wie könnte man die Informationen benutzerfreundlicher

darstellen?

• Ist die Sortierung der Informationen in Ordnung?

2. Mit welchen Zusatz-Informationen, die über den Inhalt von

Beipackzetteln hinaus gehen, könnte man den Patienten besser

informieren?

3. Wie könnte man die Qualität der bereitgestellten Informationen

verbessern?

III. Nutzung

(1) Aspekte:

(a) Sicherheitsbedenken:

1. Korrektheit der Informationen

• Für wie verlässlich halten Sie die Informationen?

• Wie könnte man die wahrgenommene Verlässlichkeit

erhöhen?

• Wie könnten User auf falsche Informationen aufmerksam

machen?

105

2. Aktualität der Informationen

3. Unerwünschte Datenerfassung

(b) Performanz:

Sollte die Web-Applikation schneller auf Benutzereingaben

reagieren?

(c) Verfügbarkeit:

Wie würden Sie reagieren, wenn die Web-Applikation mal nicht

erreichbar ist, wenn Sie diese benutzen möchten?

(d) Benutzerfreundlichkeit:

Wie würden Sie unerfahrene Benutzer unterstützen?

• Dabei aber keine Beeinträchtigung von erfahrenen Benutzern.

E) Freie Kommentare/Diskussion

I. Haben Sie noch weitere Fragen oder Bemerkungen?

II. Angenommen, die Webseite ist fertiggestellt und bietet vernünftige

Informationen: Würden Sie die Web-Applikation nutzen?

F) Endbemerkungen

G) Feedback

106

List of Requirements

ID Requirement

01-01-04-02 Display alternative dosage forms of a pharmaceutical.

01-01-05 Enable the user to go to a specific section of drug information.

01-01-07 Do not display more information than the user needs.

01-01-07-02 Allow users to filter side effects by frequency of occurrence.

01-02-01 Allow for adjustment of font size.

01-02-02 Clear structuring of text.

01-02-02-01 Accentuate sub-headings in drug information tab.

01-03-01-02 Hide functionality that might confuse inexperienced users.

01-03-01-02-04
Guide inexperienced users through the application rather than
offering them many different controls and settings.

01-03-01-03 Make the search field in panel 'Medikamenten-Auswahl' clearly
noticeable.

01-03-03 Display close buttons/icons for everything that can be closed.

01-03-04-01 Intuitive functionality for creation of new tabs.

01-03-06-01 Display introductory information at application startup.

01-05-01 Use common wording in explanatory text.

01-05-02 Avoid abbreviations in text.

01-05-03 Explain technical terms.

02-01-01-01
Display pharmaceuticals with same active pharmaceutical agent as
the currently displayed pharmaceutical.

02-02-01-01 Search for pharmaceuticals by field of application.

02-02-01-02 Search for pharmaceuticals by name.

02-02-01-04 Search for pharmaceuticals by active pharmaceutical agent.

02-02-03-01 Find specific pharmaceuticals without knowing the exact names.

02-03-01-01 Check a set of pharmaceuticals for adverse drug reactions.

02-03-01-02 List all side effects of a set of pharmaceuticals.

02-03-01-04-01 Offer price comparison of similar pharmaceuticals.

02-03-01-04-02 Compare similar pharmaceuticals.

02-03-02 Support identification of pharmaceuticals.

02-03-05
Provide functionality to print the selected information of currently
displayed pharmaceutical.

02-04-01 Inform users how the owner/operating authority of the web
application can be contacted.

02-05-02
Provide experiences of other users with the application or specific
pharmaceuticals.

107

ID Requirement

03-01-02-02
Inform users that they will not be profiled and that collected data
will not be applied beyond the scope of the application.

03-04-02 Make GUI design more diversified/attractive/appealing

Tab. 7-2: Requirements mentioned most often during requirements elicitation.

108

Mapping of relevant requirements to objectives for preliminary draft

Fig. 7-1: Mapping of relevant requirements to objectives for preliminary draft. (Objectives for

application design are not listed because we collected no requirements for them.)

= weak relationship = strong relationship
= medium relationship = no relationship

Objectives
Data Interface Design Principles Functionality

D
ata tam

pering

S
tructure of layout

F
orm

atting of headings

S
cientific expressions

C
ontrast and readability

Inexperienced users

E
xperienced users

A
ggregation of inform

ation

R
efinem

ent of inform
ation

Z
oom

 capabilities

W
rong inform

ation

1 12 13 14 16 5 6 8 9 10 11 2 3 4 7 15

R
eq
u
ir
em
en
ts

01-01-04-02 3 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
01-01-05 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0
01-01-07 3 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0
01-01-07-02 3 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0
01-02-01 0 0 0 0 0 0 0 0 3 3 0 0 0 0 9 0
01-02-02 0 0 0 0 0 9 0 0 0 0 0 0 9 0 0 0
01-02-02-01 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
01-03-01-02 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0
01-03-01-02-04 0 0 0 0 0 3 0 0 0 9 0 0 0 0 0 0
01-03-01-03 0 0 0 0 0 9 0 0 0 3 0 0 0 0 0 0
01-03-03 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0
01-03-04-01 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0
01-03-06-01 0 3 3 3 3 0 0 0 0 9 0 0 0 0 0 0
01-05-01 0 0 0 0 0 0 0 3 0 0 0 0 9 0 0 0
01-05-02 0 0 0 0 0 0 0 3 0 0 0 0 9 0 0 0
01-05-03 0 0 0 0 0 0 0 9 0 0 0 0 9 0 0 0
02-01-01-01 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0
02-02-01-01 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
02-02-01-02 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
02-02-01-04 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
02-02-03-01 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0
02-03-01-01 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0
02-03-01-02 3 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0
02-03-01-04-02 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0
02-03-02 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0
02-03-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02-04-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03-01-02-02 0 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0
03-04-02 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

P
rovide Inform

ation
on pharm

aceuticals

N
o unnecessary

data collection

T
rustw

orthy sources
of inform

ation

U
ser inform

ation:
risks and data sources

S
election of

displayed inform
ation

109

Complete list of Elicited Requirements

 Usability – 01

● Drug Information Tab – 01

 Structuring – 01

• Requirement 01-01-01-01

– Well-arranged ordering of information on pharmaceuticals

– Sources: 1

– Description:

– Order information in drug information tab in a way that

makes sense

– Example: Use the ordering of package information leaflets

– Example: Order information in sequence of relevance, i.e.,

information necessary prior to intake, information concerning

intake, information relevant after intake, ...

• Requirement 01-01-01-02

– Provide short, summarised information on top of drug

information tab

– Sources: 1

– Description:

– Summarise information provided in drug information tab

– Display the summarised information on top of drug

information tab

– Example: Provide an icon on top of the drug information tab

if information concerning pregnancy is available.

– Example: Provide an icon on top of the drug information tab

if ability to drive can be affected by pharmaceutical.

110

• Requirement 01-01-01-03

– Replace question 'Um welches Arzneimittel handelt es sich?' with

name of pharmaceutical.

– Sources: 1

– Description:

– The user wants to be able to clearly identify the

pharmaceutical so that the name of the pharmaceutical is the

most important information.

– The question 'Um welches Arzneimittel handelt es sich?' is

not necessary because the name of the pharmaceutical can

serve a similar purpose.

• Requirement 01-01-01-06

– Reposition section dosage form

– Sources: 2

– Description:

– The dosage form is related to the dosage information so that

dosage form and dosage information should be listed next to

each other.

• Requirement 01-01-01-07

– Do not contain dosage form and package size in name of

pharmaceutical

– Sources: 1

– Description:

– Do not list Aspirin N300 as 'Aspirin N300' rather than

'Aspirin N300 Tbl. N3'

 Requirement 01-01-02

• Highlight information related to medical conditions or allergies

specified by the user

• Sources: 1

111

• Description:

– Information on a pharmaceutical concerning medical conditions

or allergies of a user is highly relevant for the user.

– Specify this information in another colour, underlined, greater

font size or special section.

 Requirement 01-01-03

• Emphasise warning messages

• Sources: 1

• Description:

– Warning messages are important for the user.

– Users are used to recognise messages written in red font colour as

warning messages.

– Thus, display warning messages in red font colour.

 Provided Information - 04

• Requirement 01-01-04-01

– Display alternative package sizes of a pharmaceutical

– Sources: 1

– Description:

– Inform the user if the pharmaceutical is also available in

different package sizes.

– Enable the user to see the different package sizes.

• Requirement 01-01-04-02

– Display alternative dosage forms of a pharmaceutical

– Sources: 7

– Description:

– Inform the user that the pharmaceutical is also available in

other dosage forms.

– Enable the user to see the other available dosage forms.

112

• Requirement 01-01-04-03

– Display whether pharmaceutical requires prescription

– Sources: 2

– Description:

– User might be interested in knowing whether he can freely

procure the pharmaceutical or needs to contact a physician

first.

• Requirement 01-01-04-04

– Provide information on mode of action of pharmaceutical

– Sources: 1

– Description:

– Describe how a pharmaceutical works

• Requirement 01-01-04-05

– Display pharmaceuticals with different intensity

– Sources: 1

– Description:

– Inform the user that the pharmaceutical is also available with

a different intensity.

– Enable the user to see the versions with different intensity.

– Different intensity = Higher or lower used amount

• Requirement 01-01-04-06

– Inform user whether it is allowed to pestle, divide, or dissolve a

pharmaceutical to ease taking of pharmaceutical

– Sources: 2

113

– Description:

– Some people might have problems to swallow a

pharmaceutical

– It would be useful to know whether a capsule can be opened

and its content can be dissolved in a fluid or a tablet can be

divided or pesteled to ease taking of the pharmaceutical

• Requirement 01-01-04-08

– Provide a list of pharmaceuticals that contain a specified active

pharmaceutical agent or comprise a group of pharmaceuticals

– Sources: 1

– Description:

– If a contraindication states that a pharmaceutical should not

be taken with another pharmaceutical that contains a distinct

active pharmaceutical agent the user should be able to easily

determine the pharmaceuticals containing this active

pharmaceutical agent. For example by clicking on the listed

active pharmaceutical agent.

– When a group of pharmaceuticals, like anti-inflammatory

drugs, is mentioned the user should be able to list the

pharmaceuticals that comprise this group.

• Requirement 01-01-04-09

– Provide information on price of pharmaceutical

– Sources: 1

• Requirement 01-01-04-10

– Provide information on follow-up pharmaceuticals

– Sources: 1

– Description:

– Inform user which pharmaceuticals might be useful after

taking a pharmaceutical

114

– A pharmaceutical might be only applicable for a certain

amount of time so that an alternative should be taken

afterwards

– Another pharmaceutical might be useful to help with side

effects

• Requirement 01-01-04-12

– Provide information on suitable dosage

– Sources: 1

– Description:

– Inform the user about suitable dosage based on age or weight.

• Requirement 01-01-04-13

– Provide information on relation in which two pharmaceuticals

should be taken

– Sources: 1

– Description:

– Inform the user in which sequence two pharmaceuticals

should be taken.

– Example: If you take drug A and drug B take drug B two

hours before you take drug A

 Requirement 01-01-05

• Enable the user to go to a specific section of drug information

• Sources: 7

• Description:

– In order to ease navigation in the drug information panel enable

the user to directly navigate to a specific section of drug

information

115

 Requirement 01-01-06

• Offer functionality to go to top of drug information page below each

section of information

• Sources: 1

• Description:

– Enable the user to navigate directly to the top of the drug

information page.

 Requirement 01-01-07

• Do not display more information than the user needs

• Sources: 9

• Description:

– Enable the user to configure which information he is interested in

and hide information he is not interested in.

• Requirement 01-01-07-02

– Allow the user to filter side effects by frequency of occurrence

– Sources: 4

– Description:

– Example: Display only side effects that occur often or very

often

– Example: Enable users to hide side effects which occur

seldom

• Requirement 01-01-07-03

– Provide functionality to select all/no information to be displayed

– Sources: 1

– Description:

– Manually enabling/disabling all information can be tedious

– Offer information to directly enable/disable all displayed

information

116

• Requirement 01-01-07-04

– Enable user to turn off/on information concerning pregnancy

– Sources: 2

– Description:

– Since pregnancy concerns only a few people it should be

possible to hide this information

• Requirement 01-01-07-05

– Filter displayed information by age

– Sources: 1

– Description:

– Hide information irrelevant for age-groups

– Example: Hide dosage information for children, if

information for adults is requested.

• Requirement 01-01-07-06

– Expand sections of information

– Sources: 1

– Description:

– Enable users to expand/fold sections of information

– Display only the headings of the sections and provide a toggle

where the user can expand or fold the section of information

● Readability – 02

 Requirement 01-02-01

• Allow for adjustment of font size

• Sources: 8

• Description:

– Enable the user to adjust the font size through functionality

provided by the application

117

 Requirement 01-02-02

• Clear structuring of text

• Sources: 5

• Description:

– Improve readability through clear structuring/markup/layout of

text

• Requirement 01-02-02-01

– Accentuate sub-headings in drug information tab

– Sources: 4

– Description:

– In order to ease retrieval of information, sub-headings in drug

information tab, like side effects or contraindications, should

be clearly recognisable

• Requirement 01-02-02-02

– Transform text into bullet lists if possible.

– Sources: 1

– Description:

– Instead of lengthy text display information in bullet lists.

– Example: Make a bullet point for every listed adverse drug

reaction instead of listing them as continuous text.

• Requirement 01-02-02-03

– Group contraindications

– Sources: 1

– Description:

– Example: One group for medical conditions and one group

for hypersensitivities to active pharmaceutical agents

118

 Requirement 01-02-03

• Ensure that text-fields have at least a length of twelve words of

average length

• Sources: 1

• Description:

– To improve readability ensure that lines of text are not too short.

 Requirement 01-02-04

• Maintain readability by ensuring that columns of tables have enough

margin

• Sources: 2

• Description:

– Clearly delineate different objects in drug information interface

with margins.

 Requirement 01-02-05

• Do not use distracting fonts or backgrounds

• Sources: 1

• Description:

– Do not use too colourful fonts or backgrounds

 Requirement 01-02-06

• Provide functionality to turn off all control elements so that the user

can focus on reading the information on pharmaceuticals

• Sources: 1

• Description:

– Display only the central drug information tab so that the user is

not distracted while reading the provided information

– Hence, hide the sidebars

119

 Requirement 01-02-07

• Replace text with graphics

• Sources: 1

• Description:

– Provide graphics that convey the same information as the

replaced text so that the user can easier process the provided

information.

● Intuitive operation of application – 03

 Confusion of users – 01

• Requirement 01-03-01-01

– Display only relevant GUI elements to keep the application

simple

– Sources: 3

– Description:

– Display only GUI elements if it makes sense to use them

– Example: Do not display selection of details provided on

pharmaceuticals if the user is not viewing information on

pharmaceuticals

• Requirement 01-03-01-02

– Hide functionality that might confuse inexperienced users

– Sources: 6

– Description:

– Do not confuse inexperienced users with too many GUI

elements

– Provide a simple view for inexperienced users as default and

allow expert users to turn on further functionality

120

– Requirement 01-03-01-02-01

– Allow experienced users to turn on hidden GUI elements

– Sources: 1

– Requirement 01-03-01-02-02

– Hide additional functionality for inexperienced users

– Sources: 1

– Description:

– Do not initially enable inexperienced users to access

additional functionality

– Inform users that they can turn on access to additional

functionality

– Requirement 01-03-01-02-03

– Display only introductory information at application startup

– Sources: 2

– Description:

– Provide only introductory information at application

startup

– No display of GUI elements that are not related to the

introductory information

– Requirement 01-03-01-02-04

– Guide inexperienced users through the application rather than

offering them many different controls and settings

– Sources: 4

– Description:

– Ask users for relevant input

– Display outputs accordingly

– Do not require much initiative from the user

121

• Requirement 01-03-01-03

– Make the search field in panel 'Medikamenten-Auswahl' clearly

noticeable

– Sources: 7

– Description:

– During requirement elicitation interviews many interviewees

did not realise that they could enter search terms in the search

field

– The GUI should be designed more clearly so that users

immediately realise that they can use the search field to

initiate a search for pharmaceuticals

• Requirement 01-03-01-04

– Use clear and meaningful names for GUI elements

– Sources: 2

• Requirement 01-03-01-05

– Do not offer different functionality under the same name

– Sources: 1

– Description:

– Do not confuse the user by providing multiple GUI elements

with same name but different associated functionality

 Instructions – 02

• Requirement 01-03-02-01

– Easy locating and accessing of help

– Sources: 1

– Description:

– Provide a link to the help menu that is positioned in such way

that the user directly realises how he can access the help

menu

122

• Requirement 01-03-02-02

– Tooltips should not obstruct the user

– Sources: 1

– Description:

– Avoid situation where the user is obstructed by tooltips that

cover something

– Example: Avoid situations where the user clicks on the tooltip

instead of a button he wanted to click on

– Example: Avoid situations where the user cannot read

something because a tooltip floats above it.

• Requirement 01-03-02-03

– Explain detail level selection

– Sources: 1

– Description:

– Explain to the user how the detail level selection works and

what is its intended purpose

• Requirement 01-03-02-04

– Explain functioning of details panel

– Sources: 3

– Description:

– Explain to the user how the details panel work and what is its

intended purpose

 Requirement 01-03-03

• Display close buttons/icons for everything that can be closed

• Sources: 5

• Description:

– Indicate where the user can close a GUI element

123

 Tabs – 04

• Requirement 01-03-04-01

– Intuitive functionality for creation of new tabs

– Sources: 7

– Description:

– During requirement elicitation many interviewees did not

understand what is meant with tab and how the creation of

tabs work

– Find a way that users can still view pharmaceuticals in

different tabs but intuitively grasp how the creation and

handling of tabs work

• Requirement 01-03-04-02

– Manual creation of new tabs

– Sources: 1

– Description:

– Provide functionality to manually create a new empty tab

 Enabling/Disabling Panels – 05

• Requirement 01-03-05-01

– Avoid accidental disabling of GUI elements

– Sources: 2

– Description:

– Design GUI in such a way that users cannot turn off GUI

elements by accident

– At least prevent that users do not know how to turn them back

on

124

• Requirement 01-03-05-02

– Explain how to disable/enable panels

– Sources: 1

– Description:

– Provide explanations how users can enable/disable single

panels.

• Requirement 01-03-05-03

– Instead of check boxes in the header, provide an icon that

minimises panels and displays them as small icons on the side of

the application

– Sources: 1

 Homepage – 06

• Requirement 01-03-06-01

– Display introductory information at application startup

– Sources: 6

– Description:

– Inform the user about the purpose of the application

– Give short usage instructions

• Requirement 01-03-06-02

– Display start page if all other tabs are closed

– Sources: 3

– Description:

– Never display no tab. Display start page with instructions, if

all other tabs are closed.

• Requirement 01-03-06-03

– Ask users for general settings on start page

– Sources: 1

125

– Description:

– Let the user perform basic configuration of the application on

the start page

– Example: Setting for normal or advanced view

• Requirement 01-03-06-04

– Provide a button to get back to home page and call it 'Startseite'

– Sources: 1

● Accessing information on pharmaceuticals – 04

 Requirement 01-04-01

• Easy access to desired information

• Sources: 3

• Description:

– Do not obstruct the user with unnecessary typing or clicking

– Reduce tipping effort by offering predetermined options.

 Requirement 01-04-02

• Display more search characteristics in panel 'Medikamenten-

Auswahl' instead of listbox

• Sources: 1

• Description:

– Remove the listbox from panel 'Medikamenten-Auswahl'

– Use the freed space for more search characteristics

● Comprehensibility – 05

 Requirement 01-05-01

• Use common wording for explanatory text

• Sources: 4

126

• Description:

– Use only words in explanatory text that a common user would

understand

– Example: Avoid computer slang words: Header → Kopfzeile

 Requirement 01-05-02

• Avoid abbreviations in text

• Sources: 8

• Description:

– Replace abbreviations if possible.

 Requirement 01-05-03

• Explain technical terms

• Sources: 9

• Description:

– Provide somehow explanations for technical terms

– Explanations should be provided intuitively and simply

– If possible it should not require opening a new window

– Explanations should not introduce new technical terms

 Requirement 01-05-04

• Replace mathematical notations

• Sources: 1

• Description:

– Example: Replace '>' with 'größer als' (greater than)

 Requirement 01-05-05

• Provide links to further information

• Sources: 1

127

• Description:

– Example: Link to sources of information that provide more

detailed information.

● Requirement 01-07

 Open links to further information in a new window

 Sources: 1

 Functionality – 02

● Linking to pharmaceuticals – 01

 Similar pharmaceuticals – 01

• Requirement 02-01-01-01

– Display pharmaceuticals with same active pharmaceutical agent

as the currently displayed pharmaceutical

– Sources: 4

– Description:

– Provide functionality to list pharmaceuticals that have the

same active pharmaceutical agent as the currently displayed

pharmaceuticals

• Requirement 02-01-01-02

– Display of pharmaceuticals with same application as currently

displayed pharmaceutical

– Sources: 3

– Description:

– Provide functionality to list pharmaceuticals that have the

same application as the currently displayed pharmaceutical.

• Requirement 02-01-01-03

– Display further pharmaceuticals in product group of current

pharmaceutical

– Sources: 1

128

– Description:

– Example: When viewing Aspirin N 300, list all available

pharmaceuticals in product group Aspirin

● Search for pharmaceuticals – 02

 Search parameters – 01

• Requirement 02-02-01-01

– Search for pharmaceuticals by field of application

– Sources: 8

• Requirement 02-02-01-02

– Search for pharmaceuticals by name

– Sources: 10

• Requirement 02-02-01-03

– Search for pharmaceuticals by PZN

– Sources: 2

• Requirement 02-02-01-04

– Search for pharmaceuticals by active pharmaceutical agent

– Sources: 4

• Requirement 02-02-01-05

– Adapt to minor typos in search string

– Sources: 1

– Description:

– A search should also find results that are typographically

close to the input parameters.

– Example: A search for 'Asisrin' should still find 'Aspirin'

• Requirement 02-02-01-06

– Search for pharmaceuticals by pharmaceutical

company/manufacturer

– Sources: 3

129

• Requirement 02-02-01-07

– Use combinations of search parameters

– Sources: 1

– Description:

– Allow specify a search request that consists of multiple

parameters

• Requirement 02-02-01-08

– Search for synonyms

– Sources: 1

– Description:

– Entered search parameters might have synonyms. The search

should consider the synonyms as well.

• Requirement 02-02-01-09

– Search for pharmaceuticals by general name

– Sources: 1

– Description:

– Example: Search for 'headache tablet' to find tablets that help

with headaches

• Requirement 02-02-01-10

– Order advanced search by relevance for user

– Sources: 1

– Description:

– Order the input fields for search parameters in advanced

search by relevance for the user.

– Example: A common user is more likely to search for

pharmaceuticals by name than by ATC-code

130

• Requirement 02-02-01-11

– Search for matches in whole database

– Sources: 1

– Description:

– Offer a search parameter that tries to find matches in all fields

of the database

– Example: Do not just search in names of pharmaceuticals.

 Search filter – 02

• Requirement 02-02-02-01

– Filter search by requirement of prescription

– Sources: 1

– Description:

– Specify whether pharmaceuticals that require/do not require a

prescription should be listed

• Requirement 02-02-02-03

– Filter search results by dosage form

– Sources: 2

• Requirement 02-02-02-04

– Filter search results by keywords mentioned in contraindications

– Sources: 3

– Description:

– Do not display pharmaceuticals as search results that mention

a specified keyword in category contraindications

– Example: Do not display pharmaceuticals where 'liver' is

mentioned in category contraindications.

• Requirement 02-02-02-05

– Filter search results by allergies

– Sources: 3

131

– Description:

– Example: Do not display pharmaceuticals with a certain

ingredient

• Requirement 02-02-02-06

– Filter search results by age group

– Sources: 2

– Description:

– Display only pharmaceuticals as search results that are

suitable for a specific age group

– Example: Display only pharmaceuticals suitable for children.

• Requirement 02-02-02-07

– Provide mask for search filters before searching

– Sources: 1

 Selection of input – 03

• Requirement 02-02-03-01

– Find specific pharmaceuticals without knowing the exact name.

– Sources: 4

– Requirement 02-02-03-01-01

– Provide list to select search parameters so that one can select

the most common synonym

– Sources: 1

• Requirement 02-02-03-02

– Filter entries displayed in a listbox by an entered string

– Sources: 2

– Description:

– Example: Enter initial letters of name of pharmaceuticals and

adopt the list of matching pharmaceuticals with each newly

entered letter.

132

• Requirement 02-02-03-03

– Provide functionality to open information on pharmaceuticals that

are being checked for adverse drug reactions

– Sources: 1

– Description:

– Let the user open the drug information tab for

pharmaceuticals he added to a check for adverse drug

reactions

– Example: Open a new tab with the drug information for a

pharmceutical if the user clicks on its name in the menu for a

adverse drug selection check

 Requirement 02-02-04

• Optionally initiate search by pressing enter in search field

• Sources: 3

• Description:

– Provide a button to start search, but start search as well if a user

presses enter in a search field

 Search results – 05

• Requirement 02-02-05-01

– Sort search results by prices

– Sources: 1

– Description:

– Order search results by price

– Lowest price on top

– If a pharmaceutical does not require a prescription patients

probably want the cheapest pharmaceutical

• Requirement 02-02-05-02

– Display alternative pharmaceuticals directly in search results

– Sources: 1

133

– Description:

– List pharmaceuticals that have same application or the same

compounds in search results

– Example: When search for Aspirin list other headache tablets

as well.

● Additional functionality – 03

 Description:

• The core functionality of the application is the patient-friendly

provision of information provided in patient information leaflets

• The category additional functionality is used for functionality beyond

the core functionality

 Aggregation – 01

• Requirement 02-03-01-01

– Check a set of pharmaceuticals for adverse drug reactions

– Sources: 10

– Description:

– Let the user specify a set of pharmaceuticals

– Check the specified pharmaceuticals for adverse drug

reactions with each other

• Requirement 02-03-01-02

– List all side effects of a set of pharmaceuticals

– Sources: 5

– Description:

– User specifies a number of pharmaceuticals and all associated

side effects are listed

134

• Requirement 02-03-01-03

– Display a warning message if a pharmaceutical currently being

viewed has an adverse drug reaction with a previously viewed

pharmaceutical

– Sources: 1

• Comparison of pharmaceuticals – 04

– Requirement 02-03-01-04-01

– Offer price comparison of similar pharmaceuticals

– Sources: 4

– Description:

– Let the user see the prices of similar pharmaceuticals

– Enable the user to identify the cheapest alternative.

– Requirement 02-03-01-04-02

– Compare similar pharmaceuticals

– Sources: 5

– Description:

– Let the user select two pharmaceuticals for comparison

• Requirement 02-03-01-05

– Provide general information on classes of pharmaceuticals

– Sources: 1

– Description:

– Provide information common to most variants in a class of

pharmaceuticals

– Example: Specify common side effects of headache tablets

• Requirement 02-03-01-06

– Check a set of pharmaceuticals for similar application

– Sources: 1

135

– Description:

– Inform the user if he takes two pharmaceuticals with same

application

– Let the user specify the pharmaceuticals he is currently taking

– Inform the user if he is taking pharmaceuticals that are

possibly redundant

• Requirement 02-03-01-07

– Provide a list of pharmaceuticals that should not be taken under a

specific condition

– Sources: 1

– Description:

– Let the user specify some conditions

– List all pharmaceuticals that should not be take under this

condition

– Example: List all pharmaceuticals that should not be taken

during pregnancy

• Requirement 02-03-01-08

– Check a set of pharmaceuticals for compatibility with allergies

– Sources: 2

– Description:

– Let the user specify a set of pharmaceuticals and a set of

allergies

– Check whether the pharmaceuticals are compatible with those

allergies

 Requirement 02-03-02

• Support identification of pharmaceuticals

• Sources: 5

136

• Description:

– Enable the user to identify an unknown pharmaceutical

– Example: Provide images of packages, pill, and blister so that the

user can check whether the pharmaceutical he wants to identify

looks like the one in the images

 Out of scope of thesis – 03

• Requirement 02-03-03-01

– Link to pharmacies that sell the pharmaceutical

– Sources: 5

– Description:

– Provide links to pharmacies where the user can buy the

currently viewed pharmceutical

• Requirement 02-03-03-02

– Provide a list of pharmacies that are open and in the vicinity of

the user

– Sources: 1

– Description:

– Enable the user to find pharmacies in his vicinity where he

can purchase a desired pharmaceutical

• Requirement 02-03-03-03

– Provide information on homespun remedies for common

illnesses.

– Sources: 1

– Description:

– Example: Inform users to drink chicken soup if they come

down with a cold.

• Requirement 02-03-03-04

– Search for suitable medical practitioners

– Sources: 2

137

– Description:

– Let the user specify an illness

– Provide a list of suitable medical practitioners

• Requirement 02-03-03-05

– Provide a dedicated interface for mobile phones

– Sources: 2

• Requirement 02-03-03-06

– Make appointments with specific medical professionals

– Sources: 1

– Description:

– Interface with medical practitioners so that users can directly

make appointments with medical practitioners

• Requirement 02-03-03-07

– Provide information on current widespread diseases.

– Sources: 1

– Description:

– Example: Inform user about a current outbreak of flu

• Requirement 02-03-03-08

– Provide pharmaceutical news to attract users.

– Sources: 1

• Requirement 02-03-03-09

– Integration with German healthcare telematics infrastructure

– Sources: 1

 Requirement 02-03-04

• Provide functionality to go back to previously viewed

pharmaceuticals

• Sources: 1

138

• Description:

– Make the buttons for 'Go back one page'/'Go forward one page',

which are provided by browsers, work

 Requirement 02-03-05

• Provide functionality to print the selected information of currently

displayed pharmaceutical

• Sources: 4

• Description:

– Provide some functionality to enable the user to print information

on currently selected pharmaceutical

– Print just the information the user has currently selected

– Do not print the GUI elements

 Requirement 02-03-06

• Enable users to create a list of pharmaceuticals they are taking and to

print the list

• Sources: 1

• Description:

– Hospitals or retirement homes require often a list of the

pharmaceuticals one is taking

– Provide some functionality to compile such a list

● Contact to Website Owner/Operating Authority – 04

 Requirement 02-04-01

• Inform users how the owner/operating authority of the web

application can be contacted

• Sources: 4

139

• Description:

– Allow users to ask questions concerning operation or other

aspects of the application

– Example: Provide a menu where the user can write an email,

specify his email address and send the email

● User Accounts – 05

 Requirement 02-05-01

• Offer possibility to store user settings

• Sources: 1

• Description:

– Let users save their current configurations so that they can easy

view the application with a familiar setting

 Requirement 02-05-02

• Provide experiences of other patients with pharmaceuticals or with

the application

• Sources: 4

• Description:

– Provide some sort of forum or comment section where users can

communicate with each other

– Could be useful to get questions answered or read experiences of

other users with a pharmaceutical

 Requirement 02-05-03

• Personal pharmaceutical management

• Sources: 1

• Description:

– Enable users to specify the pharmaceuticals they are taking

– Store the pharmaceuticals

– Check whether a new pharmaceutical has adverse drug reactions

with current pharmaceuticals

140

– Automatically inform the user on adverse drug reactions of

specified pharmaceuticals

– Specify allergies and medical conditions to optimise searches for

pharmaceuticals

• Requirement 02-05-03-01

– Remind users to take pharmaceuticals

– Sources: 1

– Description:

– Example: Send users an email to remind them to take a

pharmceutical

• Requirement 02-05-03-02

– Inform users to reorder pharmaceuticals

– Sources: 1

– Description:

– User specifies the time he starts using a pharmaceutical

– Some time before the pharmaceutical supply should run out,

the application reminds the user to reorder

 Software System attributes – 03

● Reliability – 01

 Provided Information – 01

• Requirement 03-01-01-01

– Inform users on last update of provided information

– Sources: 3

– Description:

– Display date of last update next to sections of provided

information on pharmaceuticals

– Date of last update can be always displayed in drug

information tab because it does not require much space and

provides possibly useful information

141

• Requirement 03-01-01-02

– Enable users to report errors in provided information

– Sources: 3

– Description:

– Functionality that should increase the reliability of the

application

– Provide users with a way to report wrong application

provided by the application, if they discover such information

– Requirement 03-01-01-02-01

– Inform users on processing state of submitted notifications

concerning wrong information.

– Sources: 1

– Description:

– Show users that reports of wrong information, which is

provided by the application, are processed

– Provide some functionality where users can access the

status of wrong information reports

– Provide some functionality that captures the status of

wrong information reports

• Requirement 03-01-01-03

– Get a reliable company/association to host the application to

increase perceived reliability

– Sources: 1

– Description:

– Increase perceived reliability of the application through

operation by company/association that is perceived as reliable

• Requirement 03-01-01-04

– Let an independent entity check the provided information

– Sources: 2

142

– Description:

– Increase perceived reliability of the application through

validation by a independent entity

– Example: A group of physicians/pharmacists

• Requirement 03-01-01-05

– Inform the user about arrangements made to ensure reliability of

provided information

– Sources: 1

– Description:

– Increase perceived functionality of the application by

informing the user about arrangements made to increase

reliability

• Requirement 03-01-01-06

– Keep provided information up to date

– Sources: 3

– Description:

– Increase perceived reliability by providing information that is

up to date

• Requirement 03-01-01-07

– Describe sources of information

– Sources: 3

– Description:

– Functionality to increase perceived reliability

– Describe the sources from which the information provided on

pharmaceuticals was taken so that users can decide for

themselves whether they trust the provided information or not

• Requirement 03-01-01-08

– Link to information on pharmaceutical provided by manufacturer

– Sources: 1

143

– Description:

– Provide links to information that the manufacturer provides

on a pharmaceutical

– Do this to provide an easy way for the user to validate

provided information

 Data collection – 02

• Requirement 03-01-02-01

– Do not collect irrelevant data that could identify users.

– Sources: 1

– Description:

– Ensure anonymity of users by avoiding to collect irrelevant

data

– Example: Do map connected IPs to information requests

• Requirement 03-01-02-02

– Inform users that they will not be profiled and that collected data

will not be applied beyond the scope of the web application

– Sources: 5

– Description:

– Increase perceived reliability by telling the users that they

will not be profiled when using the application

 Requirement 03-01-03

• Provide functionality where users can give feedback/rate the

application

• Sources: 1

• Description:

– Let users report their experiences with and attitudes toward the

application

– This way users can access the reliability of the application with

comments of other users

144

● Performance – 02

 Requirement 03-02-01

• Display 'loading notification' if loading takes longer than 0.5 seconds

• Sources: 1

• Description:

– Inform users that the application is working on their requests if

responses take some time

 Requirement 03-02-02

• Response times should be less than 5 seconds

• Sources: 2

• Description:

– Do not annoy users with too slow response times

● Legal aspects – 03

 Requirement 03-03-01

• Provide information on author and operating authority ('Impressum')

• Sources: 3

• Description:

– In Germany websites have to provide an 'Impressum'

 Requirement 03-03-02

• Tell users to contact physician in case of uncertainties

• Sources: 3

• Description:

– Tell users that they should contact a physician in case of

uncertainty

– Try to make sure that self medication does not go wrong

145

● Visual Attractiveness – 04

 Description:

• Non-functional aspects that are intended to make the application

more attractive for the user

 Requirement 03-04-01

• More attractive design of header.

• Sources: 1

• Description:

– Design the header more attractive (Not only text in the header)

 Requirement 03-04-02

• Make GUI design more diversified/attractive/appealing

• Sources: 4

• Description:

– Increase attractiveness of application with a diversified design

– Do not provide a black/white experience

 Requirement 03-04-03

• Provide symbols for the categories of information

• Sources: 1

• Description:

– Diversify the GUI and ease identification of sections of

information with meaningful icons for the sections of information

 Requirement 03-04-04

• Provide different themes for application so that users can change to a

visual design they like

• Sources: 1

• Description:

– Let the user configure the application in a way they like by

offering different colour themes

146

Complete and Final Database Model

Fig. 7-2: Complete and final entity relationship diagram of database model.

147

Installation Instructions

1.) Web Access

If you do not want to install the web application yourselves, you can access

the application on the web server we set up with the following URLs:

1. GUI Prototype: 'http://alturl.com/j6t2e' or 'http://dehling.dyndns-ip.com:

8080/medinfoGuiPrototype/'

2. Final Version: 'http://alturl.com/aszda' or 'http://dehling.dyndns-ip.com:

8080/medinfo/'

2.) Installation

If the application runs to slow on the web server (more than 10 year old

linux box and just a home DSL connection) or you want to install the

application for some other reasons, follow the following instructions:

1. In order to install the GUI prototype you need to preform the following

tasks:

1. Install Tomcat application server and deploy the war file

2. In order to install the final version you need to perform the following tasks

1. Install and import MySQL Database

2. Install Tomcat application server and deploy war file

3. The specified version numbers are the version we used. Newer versions

should work as well.

4. If you perform the described steps correctly the GUI prototype/the final

version should work on your computer. Otherwise, check what went wrong.

3.) Install and import MySQL Database

1. If you are installing the GUI prototype you can skip this step.

2. Get MySQL Community Server 5.1 ('http://dev.mysql.com/downloads/

mysql/5.1.html#downloads')

We chose the Windows x86 32-bit MSI Installer. Make sure that you select a

version that fits to your operating system.

148

3. Run the setup wizard after download

1. Your can use the custom setup to install MySQL to a directory of your

choice

2. Remember the folder where you installed MySQL

3. You can also omit installation of the documentation and developer

components

4. Check the checkbox for the configuration wizard on the final screen of

the installation wizard

4. Configuration Wizard

1. Choose the standard configuration

2. Check the checkbox to run MySQL as windows service

3. Set a root password of your choice and remember it

4. Set the configuration by clicking on execute.

5. Data Import

1. Extract the zip file with the MySQL dump that can be found on the cd in

'app/db/medinfo.mysql.db.sql.zip' to the directory where you installed

MySQL. The default location is 'C:\program files\mysql\mysql server

5.1'. (We will refer to this directory with $MYSQL_HOME from now

on).

2. Press 'Windows-Key' and 'R-Key' simultaneously, enter 'cmd', and press

enter to open the command prompt.

Use a user that has access to $MYSQL_HOME.

3. Navigate to $MYSQL_HOME\bin ('PartitionLetter:' to change the

partition, 'cd directoryName' to change the directory and 'cd ..' to go one

directory level up)

1. Hence, the command sequence 'F:', cd 'programme', 'cd mysql' would

get you to the directory 'F:\programme\mysql'.

149

4. Run the command 'mysql.exe -h localhost -u root

-pYOURSPECIFIEDPASSWORD < ..\medinfo.mysql.db.sql' to import

the import the required data. If you did not extract the MySQL dump to

$MYSQL_HOME adopt the last argument accordingly. Keep in mind

that there is no space between -p and the password.

5. Enter 'services.msc' and restart the MySQL service so that the imported

tables are known to the application. (As an alternative you can restart

your PC)

6. Create the user that can read the data.

1. Run the command 'mysql.exe -h localhost -u root

-pYOURSPECIFIEDPASSWORD' in $MYSQL_HOME\bin

2. Upon successful login type the commands listed below and press

enter after each ';':

1. use mysql;

2. CREATE USER 'mysql_user'@'localhost' IDENTIFIED BY

'my5q1u532';

3. GRANT SELECT ON medinfo.* TO 'mysql_user'@'localhost';

4. quit;

3. Avoid typing errors because the application needs this user to access

the database

4.) Install Tomcat application server and deploy war file

This section describes how to deploy a .war-file to a Tomcat application

server. Deploying a .war-file to Tomcat is necessary, if you want to run the

web application locally. It should work with various versions of Tomcat as

long they use a 32-bit Java Virtual Machine (JVM). Since we tested these

instructions with Windows 7, a 32-bit CPU, a 32-bit JVM (JRE 1.6.0_29)

and Tomcat-7.0.22, the instructions are written according to those

characteristics. Feel free to adopt them to your setup. There should not be

much change.

150

1. Make sure that you have installed Java Runtime Environment (JRE) 6 or

later. If you need to install it, download it from 'www.oracle.org' and install

it.

2. Make sure that you have set the environment variable JRE_HOME. If you

need to set it go to 'Control Panel' → 'System' → 'Advanced system settings'

→ 'Advanced' → 'Environment Variables' and click on the button 'New...' in

the section for system variables. Set the 'Variable name' to JRE_HOME and

the 'Variable value' to 'Disk:\path\to\jre' (e.g. 'C:\Program Files\java\jre6'). As

an alternative you can use JAVA_HOME instead of JRE_HOME.

3. Go to 'tomcat.apache.org' and download 'apache-tomcat-7.0.22-windows-

x86.zip'.

4. Extract 'apache-tomcat-7.0.22-windows-x86.zip' to a folder of your choice.

We will call the folder extracted from the .zip-file CATALINA_HOME.

5. Copy the .war-file to CATALINA_HOME\webapps

The WAR files can be found on the CD in the directory 'app/war/' and are

called medinfoGuiPrototype.war for the GUI prototype and medinfo.war for

the final version.

6. To start Tomcat, run CATALINA_HOME\bin\startup.bat

Do not close the Tomcat window as long as you need the server

7. Open your browser and access the web application with the URL

'http://localhost:8080/applicationName'. The application name is usually the

file name of the .war-file without '.war'. The application name of

'medinfoGuiPrototype.war' would be 'medinfoGuiPrototype' and the

application name of 'medinfo.war' is 'medinfo'.

8. To shutdown Tomcat, run CATALINA_HOME\shutdown.bat.

9. If another version of the application is already deployed to Tomcat, make

sure to remove 'CATALINA_HOME\webapps\applicationName.war' and the

associated folder 'CATALINA_HOME\webapps\applicationName' prior to

copying the new .war-file (Step 5).

151

5.) Get the source code:

1. The source code is contained in the .WAR and .JAR files in the app/war/

folder of the cd. Just open the archives with an archiving software like

WinZip and view the source files.

1. GUI prototype: medinfoGuiPrototype.war

2. Final version: medinfo.war

3. Tool for DB creation: medinfoDBCreation.jar

2. Additionally, the sources are stored in the archive app/src/src.zip

1. src.zip/dbCreation: Sources of tool that builds the MySQL database.

2. src.zip/medinfoguiprototype: Sources of GUI prototype.

3. src.zip/medinfo: Sources of final version.

3. As an alternative you can check out the sources from the svn repository in

app/src/svn. The repository is called medinfo and requires no user accounts.

