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 I 

Abstract 

Current developments, including high availability of data and ever rising computing power, con-

stantly enable new approaches in the field of artificial intelligence. By using algorithms from ma-

chine learning, an instance can iteratively learn from data and perform cognitive tasks. As a large 

amount of machine learning algorithms already exists today and is still increasing rapidly, re-

searchers, data scientists, and machine learning engineers must choose which algorithm to apply 

and optimize to solve their individual problem. In most cases, the selection of a specific algorithm 

seems to be highly prediction performance motivated as well as dependent on situational tenden-

cies of the user. For use in non-productive environments, these intentions would initially be suffi-

cient. However, for operational applications these tendencies do not provide satisfactory solutions, 

as they represent a one-sided perspective and an unstructured approach. Thus, when developing 

productive applications, no methodological comparison is made between machine learning algo-

rithms, that considers factors of the data basis, the operational view and the explainability of a 

machine learning model, in addition to the commonly used metrics for evaluating predictive per-

formance. To close this gap we develop two artifacts, first a structured benchmarking procedure 

for the comparison of supervised machine learning algorithms, a particular paradigm of machine 

learning we focus on, second a list of criteria, implemented in the benchmarking model, for iden-

tifying the most appropriate supervised machine learning algorithm from a holistic perspective 

following a design science research approach. To provide robust, practical, and user-friendly arti-

facts, we validate our results in a four-step approach, by, for example, conducting a discussion 

with research experts, which is prospectively completed by a real-world application of the model. 

Our results contribute to a structured, generic procedure that supports the benchmarking of super-

vised machine learning algorithms and provides users with benchmarking-relevant dimensions to 

identify the most appropriate supervised machine learning algorithm for their individual use-case.  

Keywords: Supervised Machine Learning, Algorithm Selection, Multi-criteria Benchmarking, 

Structured Benchmarking Approach, Design Science Research. 
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1. Introduction 

Artificial intelligence (AI) is nowadays often seen as a panacea for challenges in various indus-

tries and is even attributed the ability to disrupt established business models (Häckel et al. 

2021). Since AI applications consistently achieve high performance and increasingly represent 

a benchmark to other kinds of technologies, far-reaching potentials for solving cognitive tasks 

arise. Therefore it is no coincidence that AI plays such a prominent role in the so-called Gartner 

Hype Cycle, which lists technologies that are expected to bring competitive advantages in the 

coming decade (Gartner 2020). These developments in the field of AI are possible by primarily 

increasing computing power and increasing connectivity in everyday life which results in a 

higher amount of data available to be collected (Agrawal et al. 2018). Machine Learning (ML), 

as today’s core of AI, uses algorithms to iteratively learn from this data and perform cognitive 

tasks. By increasing the use of data, the underlying model gains experience and can increase its 

prediction performance, which can be used in subsequent process steps (Janiesch et al. 2021). 

Therefore, ML algorithms are well established, for example in e-commerce or streaming plat-

forms, to make suggestions for future customer activities based on their past activities and 

search queries (Agrawal and Jain 2017). The classification underlying this use case is one of 

the core features of supervised ML (SML) – a specific ML paradigm. 

Since there already exists a large amount of ML algorithms that produce different results when 

applied to a dataset, researchers, data scientists, and machine learning engineers must choose 

between a variety of methods to solve their individual problem (Domingos 2012; Jordan and 

Mitchell 2015). On the online platform Kaggle, for example, the selection of concrete ML al-

gorithms is carried out through a competition, with the winner being the one who applies an 

algorithm best tailored to a given use case (Ketter et al. 2016). In this case, as in practical pro-

jects, the evaluation often refers to single performance metrics, such as the prediction accuracy 

of the applied algorithm (Kotsiantis 2007; Zaharia et al. 2018). In general, ML research focuses 

heavily on improving prediction performance (Wenninger et al. 2022). Therefore, a simultane-

ous consideration of different functional requirements is often neglected in practice, which con-

sequently has influence on the algorithm selection process (Cawley and Talbot 2010). Thus, 

ML algorithms are often selected in a relatively ad-hoc manner based on past experience or 

individual preferences (Domingos 2012; Hill et al. 2016). For non-productive solutions and 

applications in test environments, the situational selection process is initially sufficient.  
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However, for productive solutions that are supposed to deliver added value to customers, pre-

vailing practices in the algorithm selection process represent an inappropriate approach. In ad-

dition to the metrics used for prediction performance evaluation, further factors exist that 

influence the overall performance in an operational application (Brodley and Smyth 1995; 

Janiesch et al. 2021). For example, criteria such as the required computation time and, espe-

cially in sensitive operating environments, the energy consumption of ML algorithms represent 

requirements that can have a negative impact on customer satisfaction – regardless of prediction 

performance – if they are not adequately met. The explanatory power of a ML model may also 

be insufficient when it is used in a decision-critical domain, such as health care, where the 

correctness of the predictions is indispensable. Since ML relies on the initiation of data and 

algorithms make different predictions based on it, its nature as an upstream factor also influ-

ences productive applications. Consequently, current practices represent a one-sided perspec-

tive due to their strong focus on prediction performance and lack of consideration of 

application-relevant factors. This tendency is complemented by a seemingly unstructured ap-

proach, as the development of ML solutions requires numerous development cycles. Thus, it 

turns out to be challenging and problematic at the same time for practitioners to identify most 

suitable ML algorithms for a particular use case from the multitude of available algorithms. 

Therefore, a structured and comprehensive procedure is required to provide guidance to practi-

tioners in performing complex and nested development steps in ML projects. Since different 

algorithms perform differently according to application-relevant criteria, comparisons of pos-

sible ML algorithms should be conducted in view of the goal of high-performance end applica-

tions. The methodology of Benchmarking – a former management technique – represents a 

suitable framework for this purpose as it enables a continuous comparison of ML algorithms 

and a systematic application and therefore optimization of selected methods. Thus, ML algo-

rithms considered for the application – so called benchmarking candidates – are compared with 

a benchmark that has the best overall performance in the respective use case. After thorough 

evaluation cycles, the most suitable ML algorithm for a use case can be identified. Furthermore, 

due to the meta-model character of the Benchmarking methodology, it is possible to compare 

ML algorithms from a holistic perspective using several application-relevant criteria supple-

mentary to the already extensively used prediction performance evaluation. Hence, in addition 

to the unstructured approach, the one-sided perspective in the evaluation and selection of ML 

algorithms can be addressed. Since it is our ambition to develop both a generic and an individ-
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ually applicable model, we focus on algorithms of the supervised learning paradigm. To de-

velop the associated solution approach and to close the mentioned gaps, the following research 

questions (RQs) are formulated: 

RQ1: What should a structured procedure look like to be able to compare supervised 

ML algorithms in the sense of Benchmarking?  

RQ2: Which criteria support the structured Benchmarking in identifying the most ap-

propriate supervised ML algorithm from a holistic perspective? 

In this sense, the goal of this thesis is to develop a generic as well as a structured process by 

which ML methods can be benchmarked (RQ1). In this way it should be possible for the user 

to compare different methods when following the recommended approach. With the aim of 

laying foundation of a multi-criteria benchmarking-model, a conceptual model is introduced 

that goes beyond the already frequently used technical evaluation criteria of prediction perfor-

mance. On the one hand, the single-criterion-driven perspective is extended to steps upstream 

and downstream of the ML model, including data basis and explainability, and on the other 

hand also to operational factors (RQ2). By evaluating the potential from a holistic perspective, 

the most suitable algorithm for the particular use case should be identified. 

Although the underlying problem is partially known in the field of research, this thesis argues 

improvement to existing solutions along the lines of Gregor and Hevner (2013) for the follow-

ing reasons: (1) This thesis, in addition to considering predictive performance, is one of the first 

to highlight the Benchmarking of SML algorithms based on multi-criteria dimensions that are 

important for evaluation and the following application. (2) With the help of a structured proce-

dure for benchmarking SML algorithms, practitioners can be provided with a guide that does 

not allow the selection of methods according to situational tendencies. Furthermore, the process 

model documents the step-by-step application of specific algorithms in the context of SML. 

This thesis is structured in seven sections. After this introduction, the second section deals with 

the theoretical background of ML, the approach of Benchmarking as well as the motivation for 

users of the described concept by analyzing existing literature and comparing state-of-the-art 

processes/concepts. Section 3 describes the methodological approach before introducing the 

Benchmarking approach and the conceptual model for multi-criteria assessment in section 4. 

Section 5 evaluates both models, which is followed by a comprehensive discussion in section 

6 before the thesis concludes in section 7.  
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2. Theoretical Background 

2.1 Artificial Intelligence and Machine Learning 

AI is one of the most promising technologies that is continuously evolving, and its development 

has not yet come to an end. In particular, the availability of data and increasing computational 

capabilities are responsible for technological progress in this field so far (Berente et al. 2021). 

As a result, more data can be processed in less time, enabling AI technologies to pursue their 

goal of mimicking human-like decision-making (Brynjolfsson and Mitchell 2017). Russel and 

Norvig therefore define AI as the automation of rational behavior and the simulation of human 

behavior (2016). Despite numerous definitions, there is still no uniformity specifying the term 

(Collins et al. 2021).  

Similar difficulties for identifying a unified definition exist in the field of ML, which is the core 

of AI today (Berente et al. 2021). In general, ML represents a paradigm for improving the per-

formance of a computer program with respect to a task by gathering problem-specific experi-

ence (Jordan and Mitchell 2015). In contrast to conventional approaches, the problem solving 

is based less on manual programming and more on automated learning processes (Brynjolfsson 

and Mitchell 2017). Accordingly, available data is an indispensable ingredient for these learn-

ing processes to bring about useful insights, decisions, and predictions related to a task (Jordan 

and Mitchell 2015). Since the output depends significantly on the quality as well as the quantity 

of available data, ML projects initialize as much task-specific data as possible and process it in 

further steps (Agrawal et al. 2019; Burkart and Huber 2021; Kessler and Gómez 2020). Within 

the ML lifecycle, this step is described as Feature Engineering. During the process, suitable 

representations are extracted from the amount of data – so called features – if certain data ele-

ments negatively influence each other or are not appropriate for the learning process (Domingos 

2012; Janiesch et al. 2021; Kotsiantis 2007). For example, Feature Engineering can withhold 

discriminating information from the subsequent learning process that would otherwise affect 

the generated output. Conversely, Feature Engineering can also be used to highlight data at-

tributes related to a target output (Brynjolfsson and Mitchell 2017; Kessler and Gómez 2020). 

In a further step, the preprocessed data is used by an individually selected ML algorithm to 

identify patterns and relationships with respect to the task (Häckel et al. 2021). Thus, an under-

lying model is developed based on the training data using the iterative manner of the respective 

algorithm (Janiesch et al. 2021). In the context of this step, the data basis can be thought of as 

a training set of N elements {𝑥1, … , 𝑥𝑁}, based on which an algorithm-specific function 𝑦(𝑥) is 
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applied that maps the given input to an output (Bishop 2006). Since the goal of a ML model is 

to make correct predictions based on unknown examples, training data sets are used to increase 

the generalization capability of the underlying ML model (Bishop 2006; Döbel et al. 2018; 

Domingos 2012). After sufficient validation of the ML model in several training cycles, the 

deployment in a productive environment can take place (Kühl et al. 2021). In terms of expla-

nation, figure 1 provides a rough overview of the ML lifecycle.  

 

Figure 1: Simplified representation of the ML lifecycle 

Own representation derived by underlying literature 

With respect to the task and the underlying data basis, three techniques can be distinguished in 

ML, called supervised ML (SML), unsupervised ML (UML), and reinforcement learning (RL). 

SML uses samples of data consisting of labeled input-output pairs to train an underlying model 

that predicts an output given unknown input (Janiesch et al. 2021; Kühl et al. 2021). Depending 

on the target values, SML can perform two different tasks. For discrete target values, the input 

values can be assigned to predefined categories in the sense of a classification. In contrast, 

regressions can be performed using appropriate algorithms to predict continuous target values. 

(Bishop 2006). An exemplary algorithm for classification is the support vector machine (SVM), 

which divides values into two classes with the help of hyperplanes, so that the largest possible 

object-free space remains around the separating plane (Kotsiantis 2007). Artificial neural net-

works (ANNs) can perform both classification as well as regression tasks by modifying input 

parameters by weighting contained nodes as part of an iterative process to derive an overall 

result (Bishop 2006; Döbel et al. 2018). UML as a further ML technique is used in particular 

when suitable classification groups – elements with common properties – are to be found within 

unlabeled data, although no suitable definition of the groups is available (Bishop 2006; Janiesch 

et al. 2021). Accordingly, this technique is often suitable for finding clusters in advance of the 

application of SML algorithms. In contrast to the other two approaches, RL defines a goal that 

is to be achieved entirely according to the principle of trial and error as well as under predefined 

framework conditions. By finding suitable actions, the model receives a reward and is thus 
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conditioned during the learning process regarding behaviors (Janiesch et al. 2021). Since to-

day’s ML applications are mostly subject to supervised learning and the techniques differ 

greatly in terms of learning processes, we deliberately focus on SML algorithms (Jordan and 

Mitchell 2015; Kotsiantis 2007).  

2.2 Practices and Characteristics of Machine Learning Endeavors 

ML generally is a data-driven approach and thus represents a central solution for processing 

large amounts of data. In particular, ML can address the challenges of the 3 V’s consisting of 

volume, velocity, and variety of available data (Kessler and Gómez 2020). Conversely, the ap-

plication of ML is also highly dependent on the underlying data. Here, arguably one of the 

biggest challenges for data scientists on ML projects is poor data including missing or even 

duplicated values (Burkart and Huber 2021; Gudivada et al. 2017). Accordingly, error correc-

tions in the data sets are often necessary to guarantee applicable ML models. Increasingly, ML 

engineers are also confronted with a large availability of data, which results in more time re-

quired to train a ML model (Domingos 2012). Consequently, a trade-off between time to de-

ployment and collecting as much data as possible to achieve powerful ML models is required. 

Furthermore, depending on the data set, its structure and the weighting of the features, different 

ML algorithms are suitable. Therefore, their selection should be made depending on the indi-

vidual use case (Polyzotis et al. 2018). In general, different ML algorithms have individual 

advantages and disadvantages, depending on the underlying data (Kotsiantis et al. 2006). Ac-

cordingly, the dimension of data not only affects the performance of a ML model and its training 

time, but also influences the selection of a corresponding algorithm. Due to the different and 

partly opposing perspectives on it, the evaluation of its quality becomes correspondingly com-

plex (Burkart and Huber 2021). Nevertheless, due to the strong dependency of the output of an 

ML model as well as its learning capability, the nature of the underlying data basis cannot be 

ignored when selecting an algorithm.  

Once the data is processed and specific algorithms are selected for training a ML model, oper-

ational factors must be considered. Generally, algorithms differ in terms of their required com-

putation time and associated energy consumption (García-Martín et al. 2019). Depending on 

the location and energy prices, different computational costs arise. As it becomes necessary in 

emergence of Green Information Systems (IS) to deliver energy efficient and thus sustainable 

implementations, energy savings through ML applications compared to the consumption of an 

alternative computational approach are beneficial (Lehnhoff et al. 2021; Wenninger et al. 2022). 
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In addition, as already described, the nature of the data basis influences the required computa-

tion time. For example, SVMs take longer to compute if the data basis is more extensive (Good-

fellow et al. 2016). To remove mutually negative, irrelevant and redundant features from a data 

set and reduce the computing time of an algorithm, the feature subset selection method repre-

sents a suitable solution. (Kotsiantis et al. 2006). Nevertheless, the demand for operational re-

sources remains higher compared to heuristics and engineering methods, which are subject to 

the logic paradigm. Their methodological framework specifies a step-by-step approach that 

yields deterministic results. ML algorithms, on the other hand, undertake probabilistic deduc-

tions based on underlying data and follow the learning paradigm (Gustavsson and Ljungberg 

2021). Therefore, ML algorithms - compared to logic-focused methods – are able to achieve 

higher prediction performances related to a task (Wenninger and Wiethe 2021). The improve-

ments in predictive performance result from, among other things, a smaller number of con-

straining measures, easier handling of large data sets, and accounting for interactions between 

variables (Müller et al. 2016). Despite the high prediction performance that can be achieved 

using ML algorithms, even relative to other methods, operational factors must not be neglected 

with respect to training cycles and real-world applications. In the underlying literature analysis, 

only a few publications deal with this issue.  

In the context of ML model training, metrics of the prediction performance are applied in the 

validation process prior to overall evaluation. These practices are particularly justified by the 

fact that even the smallest changes, for example in Feature Engineering, can affect the perfor-

mance of a model (Sculley et al. 2014). Since the prediction performance metrics can be made 

quantitatively measurable, they represent sufficient indicators of the quality of changes made. 

However, for the final selection of an ML algorithm – after enough training cycles – further 

factors must be considered as well. Therefore, the predominant focus on prediction performance 

in the selection of a ML algorithm represents a critical step (Kotsiantis 2007).  

To address prediction performance metrics for classifications, a digression is needed for the 

underlying assumption. Accordingly, we assume binary use cases, where for each data point a 

class predicted by the classifier must be compared to the actual condition (Kratsch et al. 2021). 

Therefore, a true positive (TP) classification occurs when an actual positive condition is classi-

fied as a positive condition and a true negative (TN) occurs when an actual negative condition 
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is classified accordingly. Misclassifications occur when an actual positive condition is classi-

fied as a negative (FN), or actual negative conditions are classified as positive condition (FP) 

(Häckel et al. 2021). Figure 2 gives a corresponding overview for the predictions of a classifier.  

  
Actual 

  
Positive Negative 

P
re

d
ic

te
d

 Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

Figure 2: Classification outcomes in a 2 x 2 confusion matrix 

(Agarwal 2019) 

Hereby, the theoretical foundation for the prediction performance of a classification is laid. A 

pre-selection of common prediction performance metrics for SML algorithms and thus classi-

fication and regression tasks is listed in table 1. 

Selecting a predictive performance metric tailored to the specific use case is essential for a 

proper evaluation of a ML endeavor. In this context, each performance metric has its own ad-

vantages and disadvantages (Kühl et al. 2021). In general, the metric of Accuracy is probably 

the most common metric for evaluating the prediction performance of ML algorithms, as it is 

usually a reliable indicator (García-Martín et al. 2019; Kotsiantis et al. 2006; Kratsch et al. 

2021). However, Accuracy may lose meaning in the case of unbalanced data. For example, it 

has virtually no meaning when the failure of a nuclear power plant must be predicted based on 

a data set that only include the plant’s functionality. Therefore, a focus on multiple metrics is 

recommended. The use of composed metrics such as the F-beta score also represents a feasible 

solution, as it allows the aggregation of Precision and Recall into one metric (Kühl et al. 2021).  
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Task Metric Description Formula 
C

la
ss

if
ic

at
io

n
 

Accuracy Accuracy is the proportion of true results among 

the total number of cases examined.  

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 

Precision (p) Precision is the proportion of predicted positive 

conditions consistent with the actual conditions. 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall (r) Recall is the proportion of all positive conditions 

consistent with a correct classification.  

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F-beta score (Fβ) The F-beta score (Fβ) allows to aggregate Recall 

and Precision into one metric, using the parameter 

β to adjust the balance of both. The smaller the beta 

value, the more weight is given to Precision. The 

reverse is true to Recall. 

(1 +  𝛽2)  ×  
𝑝 × 𝑟

(𝛽2 × 𝑝) + 𝑟
 

ROC AUC The Receiver Operating Characteristic curve 

(ROC) corresponds to a graph showing the perfor-

mance of a classification model at various classifi-

cation thresholds. The Area Under the ROC Curve 

(AUC) indicates the ability of a classifier to avoid 

false classifications. 

Since the ROC curve plots the Re-

call (True Positive Rate) against the 

False Positive Rate at different 

thresholds and consequently deter-

mines the AUC, the metric is solved 

graphically (Appendix A). 

R
eg

re
ss

io
n

 

RMSE The Root Mean Square Error (RMSE) measures the 

quality of predictions by calculating the deviations 

between predictions 𝑦̂(𝑖) and the actual measured 

values 𝑦(𝑖).  

√
∑ (𝑦(𝑖) − 𝑦̂(𝑖))2𝑁

𝑖=1

𝑁
 

MAPE The Mean Absolute Percentage Error (MAPE) 

measures the quality of predictions by calculating 

the mean of the percentage deviation between pre-

dicted values 𝑦̂(𝑖) and actual values 𝑦(𝑖). 

∑ |
𝑦(𝑖) − 𝑦̂(𝑖)

𝑦(𝑖)
|𝑁

𝑖=1

𝑁
 

Table 1: Selection of frequently used prediction performance metrics 

(Agarwal 2019; Zuccarelli 2021) 

The output of a ML model can also be evaluated in terms of its comprehensibility by humans. 

As the degree of complexity and opacity of existing ML models increase, even experts are often 

unable to fully grasp the interrelationships in ML models (Burkart and Huber 2021; Schaaf et 

al. 2021). However, the ability of a ML model to explain its results and ensure traceability is a 

key requirement for productive applications in certain domains (Barredo Arrieta et al. 2020; 

Burkart and Huber 2021; Biran and Cotton 2017). Thus, in critical contexts such as health care 

there is a legitimate interest in being able to explain and understand deployed ML models when-

ever derived predictions can have serious consequences on a human live (Burkart and Huber 

2021; Schaaf et al. 2021). Therefore, depending on the use case, an evaluation of the output 

with respect to the explainability of an underlying ML model is required (Barredo Arrieta et al. 

2020). To create transparency in this respect, proprietary methods have been developed in the 
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eXplainable AI (XAI) research area. These methods can be used as an upstream or downstream 

step of the application of ML models (Rosenfeld 2021; Zhou et al. 2021). Along with the ap-

plication of XAI methods, the output factors of a ML model can also be evaluated with respect 

to the degree of explainability, which is mainly based on subjective and individual judgements. 

In general, the occurrences of explainability and prediction performance represent a trade-off 

since complex ML algorithms can achieve high prediction performance while providing little 

insight into the process of making predictions. This is exemplified by ANNs as black-box mod-

els whose processes leading to the final prediction cannot be understood in detail due to their 

large variable space. On the other hand, ANNs are among the most powerful algorithms with 

respect to their prediction performance and robustness in practical applications, illustrating the 

prevailing trade-off (Barredo Arrieta et al. 2020; Mohseni et al. 2021). Accordingly, it is nec-

essary to consider the requirements for explainability and prediction performance in advance 

of the application of a ML model in productive environments (Burkart and Huber 2021). In 

general, however, further factors, such as operational aspects or the nature of the data basis, 

should be considered along with such deliberations. By considering all the enumerated dimen-

sions, decisions regarding the development of productive end applications can be made from a 

holistic as well as objective perspective.  

Overall, the ML lifecycle practices prevalent in each step have a strong impact on the output of 

an ML model, which in turn can be viewed from different perspectives and evaluated accord-

ingly. From a broader perspective, the individual steps are highly nested and, especially in the 

development process of a ML model, dependent on the user’s situational tendencies, which 

makes it difficult to repeatedly apply predefined processes to different situations (Kühl et al. 

2021). Currently, there exist no explicitly tailored approaches for structuring projects in the 

field of ML. Accordingly, approaches from other fields are often used, such as the CRoss In-

dustry Standard Process for Data Mining (CRISP-DM) (Kessler and Gómez 2020; Studer et al. 

2021). CRISP-DM is a generic process model that is used for planning, communication, and 

documentation within and outside the project team. The process model follows the generic steps 

Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation and De-

ployment and is commonly applied to ML efforts as an established industry standard (Wirth 

and Hipp 2000). However, CRISP-DM does not ensure predefined quality levels and therefore 

lacks guidance on quality assurance, as the procedure does not specify criteria that can be eval-

uated from a management perspective (Wirth and Hipp 2000; Studer et al. 2021). The Team 

Data Science Process (TDSP) represents an approach, which is a flexible, iterative data science 
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methodology to deliver so-called intelligent applications. In general, the TDSP approach has 

great similarities with CRISP-DM but focuses even more on the area of data science including 

the modeling of data (Microsoft 2021). Complementary to this, the Knowledge Discovery in 

Databases (KDD) approach can be used to discover relevant patterns in data structures (Fayyad 

et al. 1996). Both TDSP and KDD can be used as part of ML efforts to generate feasible solu-

tions, but do not represent a structured process across the entire ML lifecycle, instead focusing 

specifically on data science tasks and extracting knowledge from data. Compared to TDSP and 

KDD, the CRISP-DM approach is more holistically applicable to ML projects. However, due 

to its data mining focus, it neglects the iterative application of the model on unknown data and 

the model building process (Studer et al. 2021). To fulfill the requirements of considering the 

ML lifecycle and granting quality assurance standards, which could not be sufficiently ad-

dressed by prevailing approaches, the methodology of Benchmarking is introduced in the fol-

lowing section as a possible solution approach.  

2.3 Benchmarking 

Benchmarking is a well-known management technique that supports companies in identifying 

best practices to achieve better performances. The methodology became known through a use 

case at XEROX Corp. where Benchmarking was applied to reduce manufacturing costs to re-

main competitive. Therefore, efforts have been made to understand what competitors do better 

with the aim of adapting their value-creating practices. This way, competitiveness could be 

maintained (Harvard Business Review 1987). From this use case, Benchmarking has evolved 

into an approach that pursues continuous measures and comparisons with the goal of identifying 

better practices and, consequently, improving overall performance by applying them accord-

ingly (Teuteberg et al. 2009; Watson 1993). As Benchmarking also leads to faster organiza-

tional learning, it can also be associated with business process redesign or other change 

initiatives (Drew 1997). 

Although the applications of Benchmarking vary widely today, the core of Benchmarking re-

mains. Comparisons are still made based on individually selected performance metrics, and the 

comparisons are made to standards or targets, a so-called benchmark. Accordingly, in bench-

marking ML algorithms, separate tests are performed on the same data basis and compared with 

each other. The first tested ML algorithm is therefore a benchmark for the following ML algo-

rithms as long as it shows a higher overall performance than the following ML algorithms 

(Rautu et al. 2017).  
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Since the methodology of Benchmarking represents a meta-model that drives best practices, it 

represents an adequate approach in the context of ML to address the needs that are insufficiently 

addressed by CRISP-DM, TDSP and KDD. First, since no standard process exists for the ho-

listic execution of ML projects, the benchmarking approach can integrate the ML lifecycle to 

guarantee a structured approach to ML endeavors. Second, Benchmarking allows the integra-

tion of application-relevant criteria and thereby a structured comparison of the best performing 

available algorithms with respect to predefined criteria for a use case. Accordingly, quality as-

surance standards can be formulated, which can be constantly re-evaluated and adapted as part 

of the iterative procedure. Therefore, ML endeavors get less dependent on individuals or teams 

involved, as a structure is given, which facilitates documentation of ML projects, and allows 

successful practices to be repeated more frequently. Thus, our research contributes to the de-

velopment of a (process) model that nowadays belongs to the less popular contributions of AI 

studies in IS research and accordingly offers large scope for open research (Collins et al. 2021).  
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3. Methodology 

To enable the development of a generic, structured process for benchmarking SML algorithms, 

we follow the Design Science Research (DSR) paradigm. The DSR methodology was chosen 

as it provides a structure for users to gain an understanding of problems related to the use case 

at hand, while building a bridge to application-oriented solutions. As part of the process, arti-

facts are developed that contribute to domain-specific knowledge based on the abstraction of 

reality (Gregor and Hevner 2013; Hevner et al. 2004). Accordingly, DSR is considered as a 

problem-solving paradigm that serves human purposes (Hevner et al. 2004; March and Smith 

1995). In addition, DSR represents a systematic approach that allows the incorporation of sep-

arate methods such as, in our case, an in-depth evaluation of developed artifacts (Gregor and 

Hevner 2013; Häckel et al. 2021). Thus, within the framework itself, we can create a structured 

procedure by systematic advice. In general, our intentions and the methodological framework 

fit well together, as both approaches aim to ensure a strong application focus and a generic 

character of the artifact. We follow an established, iterative DSR process, which includes five 

phases as illustrated in the following figure. 

 

Figure 3: Design Science Research process 

(Peffers et al. 2007) 

In the first phase, we identify the research problem and justify the value of the proposed artifact. 

As mentioned in the introduction, there are a variety of SML algorithms whose selection is 

usually not subject to a structured process, allowing for one-dimensional selection perspectives 

and situational approaches. However, an optimal selection tailored to the application is rarely 

made in this way. Practice and research therefore need a structured and comprehensive ap-

proach to make SML algorithms comparable with each other in the sense of Benchmarking. To 

identify most suitable algorithms for a use case, application-relevant criteria must be considered 

as part of the procedure. In the theoretical background, we also go into more detail about the 

underlying problem to lay foundation for the formulation of design objectives (DOs). These 

DOs guide the development of the model as a solution to the stated RQs. In the design and 
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development phase, we produce two viable artifacts following the guidelines of Hevner et al. 

for executing DSR (2004). Subsequently, the artifacts are evaluated to determine its value based 

on criteria such as Validity, Utility, Quality, and Efficacy. In addition, we continuously demon-

strate and evaluate our model during the development process to ensure the applicability of our 

artifacts using the framework proposed by Sonnenberg and Vom Brocke (2012). The frame-

work allows us an in-depth evaluation of our artifacts according to four established steps 

(EVAL1 – EVAL4), each including ex-ante and ex-post perspectives. As part of the EVAL1-

step, a semi-structured literature review was conducted as well as DOs were defined presented 

in Section 4, ensuring that the model represents a solution to a meaningful DSR problem with 

relevance for practitioners. In the second step, existing approaches such as CRISP-DM, TDSP 

and KDD are compared with the ideas of our model in terms of Benchmarking (EVAL2). This 

allows us to validate our DOs and to show that an artifact design provides the solution to the 

stated problem. In the further procedure, the model artifact was developed considering an ex-

ante/ex-post perspective, whereby evaluations are made before and after the artifact instantia-

tion, respectively. To draw initial inferences about our developed artifacts from a theoretical 

perspective, the designed artifacts were presented to a group of researchers from the field of 

ML and digital value networks. Domain-specific feedback can be obtained in a subsequent dis-

cussion, and the issues raised will be considered in the current drafts of the corresponding arti-

facts (EVAL3). This thesis provides feasible solutions up to the evaluation of applicable 

prototypes. To ensure that our artifacts can be applied to real-world challenges, the artifacts 

will be subjected to a real-world application in perspective (EVAL4). Thereby, different SML 

algorithms will be tried on a single data set to identify the best SML algorithm for a given use 

case based on our approach. In summary, our research contributes to what Gregor and Hevner 

call improvement of solutions that exist in practice and research (2013). We argue that the 

benchmarking artifacts developed represent far more domain-specific solutions to prevailing 

problems and thus new solutions for known problems.  

 

 

 



4. Results 

 

 15 

4. Results 

In this section, we present two model artifacts developed through the DSR methodology. With 

the help of our model artifacts, users should be able to identify the most suitable SML algorithm 

for their individual use case. Since we want to enable both a structured approach and a holistic 

consideration of application-relevant criteria, we draw on the methodology of Benchmarking. 

This is intended to replace the prevailing insufficient practices, identify best SML algorithms, 

and generate powerful productive applications. This section is structured into the definition of 

DOs (Section 4.1), an introduction to the benchmarking model (Section 4.2) and the listing of 

application relevant criteria (Section 4.3).  

4.1 Design Objectives 

To guide the development and evaluation of our artifacts, we derived three DOs from the pre-

vailing problem setting, spanning up a solution space. In the following, the DOs are introduced 

and justified, each in relation to the implementation in the artifacts.  

As discussed in section 2.1, there are major differences between ML techniques in terms of 

learning processes and specific outcomes. While SML develops its underlying model based on 

labeled data, an UML approach is tasked with recognizing patterns without pre-existing labels. 

By learning from its environment, the RL technique is completely detached from the other two 

approaches. Compared to SML, RL and UML techniques are evaluated with entirely different 

metrics because of the differences in the tasks they perform. RL approaches also have a unique 

model design and development process due to integrated rewards. To create generic as well as 

specific applicable artifacts we focus on one specific ML technique. As we want to have max-

imum impact on prevailing practices and SML represents the most used ML technique today, 

we focus the development of our artifacts on SML algorithms.  

DO.1.   The benchmarking artifacts shall exclusively consider SML algorithms to meet require-

ments of a generic but at the same time specific applicable procedure.  

As discussed in Section 2.2, Benchmarking has a wide range of applications today, and its use 

is often driven by several purposes and motivations. To consider steps upstream of benchmark-

ing SML algorithms in our artifacts, motivations shall be considered as triggers that initiate the 

benchmarking process. Accordingly, for each of the benchmarking steps there are associated 
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motivations whose occurrence can serve as an entry point. This is to ensure that the bridge is 

built between preliminary considerations made to practical implementations.  

DO.2.  The benchmarking procedure should consider the steps upstream of its own process, 

which includes motivation as an entry point to ensure relevance to the application. 

Since it is a prevailing practice in the selection process of ML algorithms to select exclusively 

according to prediction performance, adverse tendencies become widespread. Thus, ML algo-

rithms are partially selected ad-hoc based-on experience. To identify the most suitable ML al-

gorithm for a use case independent of exclusive consideration of the prediction performance, a 

solution approach is to be developed. The methodology of Benchmarking represents a suitable 

approach for this purpose, as it corresponds to a structured procedure that can compare most 

feasible solutions by nature. By integrating application-relevant criteria that are specifically 

related to SML applications, the identification of best performing SML algorithms can be con-

sidered from a holistic perspective.  

DO.3. The approach of our artifacts is to follow a structured procedure in the sense of Bench-

marking, drawing on criteria relevant for the comparison of SML algorithms.  

By following the three DOs, we aim to provide an applicable benchmarking procedure that 

makes SML algorithms comparable to each other. Our model enables users to build and validate 

a ML model in a structured way according to the ML lifecycle presented in section 2.1. Due to 

the nature of Benchmarking, most suitable SML algorithms can be identified for an individual 

use case. Since the benchmarking model addresses different research questions, two artifacts 

are developed. Following a top-down approach, the framework in terms of Benchmarking is 

presented first (RQ1), followed by criteria relevant for the benchmarking of SML algorithms 

(RQ2). 

4.2 Benchmarking Model 

The benchmarking model addresses RQ1 and thus the question how a structured procedure 

should look like to compare SML algorithms in terms of Benchmarking. Figure 4 shows the 

corresponding artifact considering the derived DOs. 
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Figure 4: Conceptual Benchmarking Model 

Own representation 

Since we follow a chronological approach in describing our model, we first address a possible 

benchmarking motivation, an upstream step and thus entry point for our process. By considering 

motivations in our procedure, a bridge can be built between initial considerations and their 

practical implementation. We propose six possible entry points in the benchmarking procedure. 

The first entry point represents the so-called Problem-Centered Initiation, which motivates 

benchmarking from a status quo and a possible problem perspective. Benchmarking of SML 

algorithms, on the other hand, can also be motivated by a possibility perspective or a goal-

oriented view according to an Objective-Centered Solution. Both motivations thus represent 

opposing perspectives to benchmark SML algorithms. The so-called Selection Triggered Initi-

ation represents a core motivation in the artifact, as the multitude of SML algorithms and the 

identification of the most suitable approach in each use case is a challenge that we want to 

solve. As noted in the description of the ML lifecycle (Section 2.1), the development of a ML 

model is based on the nature of underlying data and systematic training. Since we want to inte-

grate the ML lifecycle in Benchmarking and thus generally motivate ML projects to follow the 

benchmarking model, we divide possible entry points with respect to design and development 

cycles into Data Initiation and Design & Development Initiated. Within this framework, Fea-

ture Engineering processes and subsequent application-oriented model development cycles can 

be motivated. Finally, benchmarking processes in general as well as specifically in the case of 

the comparison of SML algorithms can be motivated by improvement requests or the desire for 
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adjustments on the part of a customer. Therefore, the entry point Customer/Client Initiated is 

exemplary for benchmarking motivations brought about by third parties.  

The motivations presented can be individual for each project and take on different characteris-

tics. In addition, the model represents possible suggestions for generic motivations that can 

provide an impetus for benchmarking SML algorithms. Therefore, there is no universally valid 

claim to completeness regarding the listed motivations.  

Once users are triggered by motivations to carry out respective projects according to the bench-

marking model, a structured procedure – the core of our model – comes into play. In contrast 

to the preceding entry points, the steps included represent a coordinated chain of effects. First, 

in the context of the step Problem Definition & Specification status quo problems are discussed 

in more detail. By concretizing existing application problems, practitioners should identify pos-

sible problem areas of present situations. In a second step, practitioners should define specific 

goals for the project outcome based on the status quo. Accordingly, the step is called Target 

Measure Definition. The defined goals represent conditions whose fulfillment is to be achieved. 

After the model has been run successfully, the result is to be measured against the defined 

technical or operational requirements. The goals set are thereby dependent on the time required 

to fulfill them. After the specification of underlying problems and the definition of goals re-

garding the outcome have set a framework for action, practitioners select algorithms according 

to individual preferences in the Algorithm Selection step. Since many different SML algorithms 

can be used as output for the productive solutions to achieve the set goals, several algorithms 

can be selected in this step. The set of selected algorithms in the model is illustrated by stacking 

them into a third dimension. To compare the selected algorithms in terms of their overall per-

formance and suitability for use in productive solutions, they undergo the Design & Develop-

ment step. Accordingly, Data Processing is performed for each selected algorithm to adapt the 

underlying data basis to the SML algorithm. In concrete terms, Feature Engineering is carried 

out based on selected and cleaned data. The framework of the data used remains the same in 

this step to ensure comparability. In addition, the data basis on which the Design & Develop-

ment process is based reflects at best the real environment in which the use of an SML model 

is required. This is to ensure that the algorithms are aligned as closely as possible to the later 

application. Thereby enough data should be generated. The following Model Training can be 

performed by applying the selected SML algorithms. This is to develop a SML model that is 
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adapted to the use case and environment. Using test data that is still unknown to the SML mod-

els, the Demonstration & Validation step is performed. In this process, new insights can be 

gained with respect to pending adaption steps, which can be implemented with the help of re-

adjustments to the data basis and corresponding new training cycles. Since several re-adjust-

ments are often necessary, the model is iteratively fitted according to so-called Model Design 

Loops. This is to advance the learning process of the underlying model so that trained models 

can fulfill their full potential with respect to their task. Once the results achieved in the Design 

& Development step are sufficient for respective algorithms from the practitioner’s point of 

view, the Benchmarking & Evaluation step follows. In this step, SML algorithms are evaluated 

with respect to their overall performance and get selected in the sense of Benchmarking. The 

following section provides an overview of dimensions and associated criteria that can be used 

to evaluate SML algorithms. The SML algorithm that was initially identified as the best-per-

forming serves as a benchmark for evaluating other SML algorithms until a better SML algo-

rithm is identified. After the structured comparison has been completed, a statement can be 

made about the SML algorithm best suited to a use case. If the identified benchmark does not 

match the targets defined in the Target Measure Definition step, iteration cycles outside the 

Design & Development step, so-called Benchmarking Iteration Loops, are required. This gives 

the practitioner the opportunity to adjust the defined targets based on accumulated experience, 

to select new algorithms or to invest further effort in the development of the model. The iterative 

process is carried out systematically until the most feasible solution is identified through Bench-

marking and defined targets are met.  

4.3 Model-integrated Benchmarking Criteria 

The need for an overview of application-relevant criteria for our benchmarking model is two-

fold. In the Target Measure Definition step, individual targets must be defined regarding the 

degree of fulfillment of use case specific criteria. In addition, SML algorithms must be compa-

rable with respect to predefined dimensions in the Benchmarking & Evaluation step. By using 

the predefined dimensions and criteria in the context of target definition and benchmarking, 

SML algorithms can be selected from a holistic perspective. Practitioners should therefore be 

enabled to select the criteria that are important for their use case as if from a toolbox and to 

weight them individually for their use case. As the benchmarking model represents a meta-

model, the benchmarking-relevant dimensions can be integrated separately. Figure 5 represents 

the benchmarking model integrated with benchmarking relevant criteria.  
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Figure 5: Model-integrated Benchmarking Dimensions and Criteria 

Own representation 
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Criterion Description Measurement 

Accessibility The Accessibility comprises the degree to 

which objectively correctly initialized pa-

rameters in a data set can be grasped by 

non-experts (Wederhake et al. forthcom-

ing). 

Measurement by an Accessibility Score 

(AS) that indicates the extent to which 

parameters can be captured in a range of 

[0, 100]. The higher the scores, the better 

the Accessibility is (Wederhake et al. 

forthcoming). 

Accuracy The Accuracy (𝑎𝑐𝑐) of data describes the 

degree to which it correctly describes an 

underlying use case (Askham et al. 2013; 

Batini et al. 2009; Burkart and Huber 

2021). 

Measurement of the number of data cor-

rectly describing an use case (𝑐) in rela-

tion to the total number of collected data 

(𝑑𝑡𝑜𝑡𝑎𝑙) (Askham et al. 2013). 

𝑎𝑐𝑐 =
𝑐

𝑑𝑡𝑜𝑡𝑎𝑙
 

Completeness The Completeness (𝑐𝑜𝑚) of data com-

prises the proportion of data collected 

compared to the data set that could have 

been collected to describe the underlying 

use case (Batini et al. 2009; Burkart and 

Huber 2021). 

Measurement of the presence of non-

blank values (𝑛𝑏) in relation to the total 

number of blank values (𝑏) and non-

blank values (Askham et al. 2013). 

𝑐𝑜𝑚 =
𝑛𝑏

𝑏 + 𝑛𝑏
 

Consistency The Consistency of data describes the de-

gree of correspondence of the semantics 

of the data to its definition (Batini et al. 

2009). 

Measurement of data patterns and value 

frequency over multiple data sets (Ask-

ham et al. 2013). 

Timeliness The Timeliness (𝑡𝑖𝑚) of data describes 

the amount of time between collection 

and use of the data (Batini et al. 2009; 

Burkart and Huber 2021). 

Determination of the time difference be-

tween collection (𝑐) and use of the data 

(𝑢) (Askham et al. 2013). 

𝑡𝑖𝑚 = |𝑐 − 𝑢| 

Uniqueness The Uniqueness (𝑢𝑛𝑖) of data describes 

the degree to which duplicates occur in a 

dataset (Batini et al. 2009). 

Measuring the number of records in the 

real world (𝑟) relative to the number of 

records in the data set (𝑟𝑑) (Askham et al. 

2013). 

𝑢𝑛𝑖 =
𝑟

𝑟𝑑
 

Validity The Validity (𝑣𝑎𝑙) of data describes the 

degree of correspondence of the syntax of 

the data with its definition (Askham et al. 

2013; Burkart and Huber 2021). 

Measurement of the number of valid data 

(𝑣𝑑) in relation to the total number of 

data (Askham et al. 2013). 

𝑣𝑎𝑙 =
𝑣𝑑

𝑑𝑡𝑜𝑡𝑎𝑙
 

Table 2: Overview of Data relevant criteria 

Own representation derived by cited publications 

4.3.2 Operation 

As ML systems increasingly rely on elaborate computer architectures that certainly require high 

computational power, the consideration of Operational Factors in the context of training ML 
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models and applying them in productive solutions become increasingly important (Jordan and 

Mitchell 2015). Especially in the training phase of a ML model, large amounts of computational 

time are invested to pursue systematic validation of achieved performances to generate most 

feasible solutions (Cawley and Talbot 2010). Considering climate goals and the related need 

for higher energy efficiency, Operational Factors are incorporated in our model. To objectively 

compare SML algorithms with respect to Operational Factors, similarly powerful hardware 

should be used in the benchmarking process. The criteria listed in table 3 are strongly interre-

lated. For example, the Computation Time has a strong influence on the resulting Energy Con-

sumption and the resulting Computation Cost. However, to enable dedicated comparisons and 

optimizations in practice regarding the characteristics of Operational Factors, the criteria are 

listed individually.  

O
p

er
a
ti

o
n

 

Criterion Description Measurement 

Computation  

Time 

The Computation Time describes the 

length of time required to perform a com-

putational process. 

Measurement of the computation time of 

an algorithm to perform a predefined task. 

Energy  

Consumption 

The Energy Consumption describes the 

amount of power used to perform a com-

putational task (García-Martín et al. 

2019). 

Measuring by embedding sensors in the 

individual components of a system (Wen-

ninger et al. 2022). 

Computation  

Cost 

The Computation Cost describes the allo-

cation of costs to the respective consump-

tion of energy units. 

Calculation from multiplying cost per unit 

of energy consumed by total energy con-

sumption. 

Table 3: Overview of Operation relevant criteria 

Own representation derived by cited publications 

4.3.3 Explainability 

A critical milestone for the widespread application of ML algorithms in productive applications 

in general is the traceability of their results (Biran and Cotton 2017). Since our artifacts have a 

generic claim and the comprehensibility of the prediction results is highly relevant in certain 

application domains, the Explainability is considered as a separate dimension. Using the criteria 

listed in table 4, ML algorithms can be evaluated with respect to their degree of Explainability. 

However, due to the lack of suitable metrics and the prevailing subjectivity in the evaluation as 

to whether the result is traceable and comprehensible, Explainability is much more difficult to 

measure than other dimensions (Barredo Arrieta et al. 2020; Burkart and Huber 2021). Thus, 

with respect to the measurement of explanatory power, we address some proposals that may be 

overtaken by new approaches in the future in a rapidly evolving field of research.  
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Criterion Description Measurement 

Accessibility The Accessibility includes the degree to 

which end users can make improvements 

and developments to a given ML model 

(Barredo Arrieta et al. 2020). 

Measurement by using an AS, which indi-

cates the degree of ability to modify 

model parameters in a range of [0, 100]. 

The more parameters can be adjusted in 

relation to a total number of available pa-

rameters to be defined, the more accessi-

ble an ML model ought to be. 

Trust The criterion of Trust implies an aware-

ness of the behavior and the strengths and 

weaknesses of the underlying predictive 

model (Barredo Arrieta et al. 2020; Bur-

kart and Huber 2021). 

Measurement by using specific question-

naires (Appendix B) and interviews be-

fore deployment (Hoffman et al. 2018; 

Mohseni et al. 2021; Zhou et al. 2021). 

Causality The Causality of a predictive model de-

scribes an understanding of input-output 

relationships of a model and the relation 

between data in terms of their attributes 

and consequent predictions (Barredo Ar-

rieta et al. 2020; Burkart and Huber 2021). 

Measurement by using approaches of fea-

ture selection (Guyon and Elisseeff 2003), 

variable importance (Breiman 2001) and 

in-depth analysis (Yu and Liu 2004). The 

clearer it is which variable leads to which 

result, the more causal the result should be 

Transferability The Transferability represents the ma-

turity of a predictive model (e.g. in pre-

dictive accuracy), the extent to which it 

can be applied to as yet unseen task-spe-

cific data and entrusted with decision sup-

port (Barredo Arrieta et al. 2020; Burkart 

and Huber 2021). 

Measurement by using test data sets to 

evaluate the trained ML Model, for exam-

ple, with respect to prediction accuracy. 

The smaller the difference in prediction 

accuracy compared to model training, the 

higher the generalization ability and thus 

the Transferability of a ML model (Roe-

lofs 2019). 

Informativeness The Informativeness of a predictive 

model describes to what extent internal 

and decision-relevant information about 

the problem to be solved is provided 

(Barredo Arrieta et al. 2020). 

Measurement by using specific question-

naires (Appendix C). (Hoffman et al. 

2018; Li et al. 2020). 

Fairness The Fairness of a predictive model in-

cludes the understandable presentation of 

results as well as their compliance with 

ethical standards (Barredo Arrieta et al. 

2020; Burkart and Huber 2021). 

Measurement of the degree of bias present 

in the model (Hardt et al.; Speicher et al.). 

Proxy functionality The Proxy Functionality represents fur-

ther criteria of Explainability, that may be 

indispensable for industry-specific appli-

cations (e.g. interactivity, privacy aware-

ness) (Burkart and Huber 2021). 

Measurement according to individual ap-

proaches.  

Table 4: Overview of Explainability relevant criteria 

Own representation derived by cited publications 
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4.3.4 Prediction Performance 

The metrics for evaluating Prediction Performance can be made quantitatively measurable with 

much less effort compared to the dimension of Explainability. Therefore, they often represent 

the core of the evaluation of ML algorithms today. In general, the achievement of a high Pre-

diction Performance is advantageous for most use cases. However, since further dimensions, 

such as Explainability, often behave contrary to Prediction Performance, the case may arise 

that users have to make individual trade-offs with respect to the underlying use case (Barredo 

Arrieta et al. 2020). When applying the performance metrics, the case can arise where a SML 

algorithm performs well on one metric but underperforms on another. Accordingly, it is im-

portant to evaluate algorithms using different Prediction Performance metrics to determine the 

quality of the underlying model (Caruana and Niculescu-Mizil 2006). Since the individual met-

rics have already been described in the theoretical background (section 2.2), the following table 

only serves as a supplement to fully understand the scores achieved by the metrics.  

P
re

d
ic

ti
o
n

 P
er

fo
rm

a
n

c
e
 

Task Criterion Measurement Value range Best value 

C
la

ss
if

ic
at

io
n
 

Accuracy (𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 

[0; 1] 1 

Precision (p) 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

[0; 1] 1 

Recall (r) 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

[0; 1] 1 

F-beta score (Fβ) (1 +  𝛽2)  ×  
𝑝 × 𝑟

(𝛽2 × 𝑝) + 𝑟
 [0; 1] 1 

ROC AUC Graphical solution (Appendix A) [0.5; 1] 1 

R
eg

re
ss

io
n
 RMSE 

√
∑ (𝑦(𝑖) − 𝑦̂(𝑖))2𝑁

𝑖=1

𝑁
 

[0;  ∞[ 0 

MAPE ∑ |
𝑦(𝑖) − 𝑦̂(𝑖)

𝑦(𝑖)
|𝑁

𝑖=1

𝑁
 

[0; 1] 0 

Table 5: Overview of Prediction Performance relevant criteria 

Own representation derived by Agarwal 2019, Kratsch et al. 2021, Zuccarelli 2021 
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5. Evaluation 

The developed artifacts represent feasible solutions up to and including the EVAL3 step. The 

results are based on a semi-structured literature review, an in-depth analysis of existing process 

models and expert discussions. Consequently, to be able to demonstrate and evaluate the appli-

cation of the developed artifacts in the context of the thesis, an exemplary use case is outlined. 

Based on this, statements can be made regarding the Validity, Utility, Quality, and Efficacy of 

the artifacts (Gregor and Hevner 2013). To consider a challenging and, consequently, forward-

looking topic, the artifacts are evaluated based on a use case of anomaly detection in energy 

consumption. 

Nowadays, the detection of anomalies in energy consumption is an important approach to in-

troduce energy efficiency measures and reduce CO2-emissions. By predicting the energy de-

mand of a consumer instance, anomalies, deviations from expected conditions, can occur. By 

detecting specific anomalies resulting, for example, from the use of energy-inefficient equip-

ment, appropriate measures can be taken to counteract them. This can rebalance energy supply 

and effective consumption of energy. Manufacturing companies in particular benefit from en-

ergy anomaly detection, as they generally have a high energy consumption and cost-intensive 

production cycles (Kaymakci et al. 2021).  

To apply our artifacts to a concrete use case, an exemplary manufacturing company under the 

pseudonym Production Inc. is introduced. The company can generate real-time data related to 

the energy flows prevailing in its production due to integrated smart meters. As environmental 

restrictions regarding CO2-emissions arise and large costs are incurred on energy procurement, 

appropriate measures are to be taken. Due to the meaningful data basis, the application of SML 

algorithms is suitable to predict the occurrence of energy anomalies and to initiate appropriate 

measures based on this prediction. To perform SML tasks, labels of the underlying data are 

necessary. Therefore, the occurring energy anomalies are listed as individual label classes and 

assigned to the individual data elements of the training data set. Accordingly, data elements 

with an anomaly are labeled of a respective anomaly class. Data elements without anomaly are 

set as functional (Kaymakci et al. 2021). Based on this, a corresponding SML algorithm can 

learn the classification of the data elements to make predictions regarding future anomaly oc-

currences. Since it is the goal to develop a productive application for energy anomaly predic-

tion, the most suitable SML algorithm should be selected. By using the benchmarking model, 
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a structured approach can be followed during development. In addition, a methodological 

framework will be given on how Production Inc. can meet its objective of predicting anomalies 

in energy consumption with the best overall performance. Figure 6 provides an overview of the 

use case specific design of the individual steps in the benchmarking model.  

 

Figure 6: Benchmarking Model according to the energy anomaly detection use case 

Own representation 

For the formulation of goals and the holistic evaluation of selected SML algorithms, the over-

view on benchmarking-relevant dimensions and criteria is utilized. Since the use case of Pro-

duction Inc. is specific and thus individual for the generic overview of the listed dimensions, 

there are differences in the degree of importance of individual criteria to be considered in bench-

marking. Therefore, in figure 7, the criteria that are less relevant for the use case are grayed out.  

  

Figure 7: Benchmarking Criteria relevant for the energy anomaly detection use case 
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To understand whether criteria are relevant to the Production Inc. use case, the individual di-

mensions are discussed in more detail. Since data quality has a positive effect on learning pro-

cesses and the performance of a ML model, criteria related to the nature of a data basis should 

generally have a sufficient degree of quality. Therefore, for the use case of Production Inc. all 

criteria related to the dimension Data are considered as relevant. Only the criterion Timeliness 

can be neglected for the use case to a limited extent. In general, the prediction of anomalies in 

energy consumption is not related to a temporal component as represented by the criterion. 

Moreover, its expression has no significant influence on the occurrence of energy anomalies. 

However, if data sets are used for algorithm training that go back further into the past and are 

thus outdated with respect to technical progress, the criterion of Timeliness should be consid-

ered. For example, data from a time of older equipment generations that had not yet imple-

mented current standards would not be sufficient for training. Therefore, the Timeliness of data 

in this use case is of limited relevance depending on advancement cycles of the underlying 

equipment.  

Since it is a goal for Production Inc. to reduce Energy Consumption and the associated Com-

putation Cost in operational terms, possible algorithms are to be compared regarding their char-

acteristics. Therefore, the selected algorithm should not consume more energy and incur more 

costs than it can save through its energy anomaly predictions and corresponding measures. In 

general, the balance of savings and consumption should be kept. However, the criterion of 

Computation Time can be neglected to a limited extent. On the part of the productive application 

no ad-hoc answers are necessary since the specific energy anomaly prediction is not time-crit-

ical. If the predictions are made in a time contingent individual to the user, the application is 

sufficient. In case of computation times exceeding the time contingent, such as several days and 

weeks, the energy anomaly prediction proves to be insufficient. Energy Consumption would be 

negatively affected, contrary to the underlying goals. Therefore, the criterion of Computation 

Time is of limited relevance for the use case.  

Regarding the Explainability of the energy anomaly prediction, the relevance of the criteria for 

the use case of Production Inc. must be considered in a differentiated way. In view of the cir-

cumstances brought about by environmental regulations, major internal company transfor-

mation processes are necessary, involving large amount of investment. Therefore, special 

consideration must be given to the prediction performance achieved when selecting algorithms. 

However, the Trust placed in the respective algorithm by the users must also be considered as 
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important, given the impact of the predictions on the company. The criterion of Accessibility is 

to be judged as relevant in the context of the algorithm selection process, as it enables a contin-

uous improvement of the model. In addition, new insights into the energy anomaly predictions 

can be gained through adjustments made, which in turn increases the confidence in the appli-

cation. To be able to use the knowledge gained by the algorithms, such as the degree of use of 

renewable energy sources or the number of emission certificates to be acquired, the criteria of 

Informativeness and Causality should be considered. By fulfilling the criterion of Transferabil-

ity, the flexibility of the productive application should also be preserved to be able to make 

correct predictions in new environments, such as after the procurement of new equipment with 

differently structured data output. The criterion of Fairness can be neglected since the underly-

ing use case leaves no room for discrimination. The Proxy Functionality can also be neglected 

since no further application-specific features are required in terms of the explanatory power of 

the prediction model.  

In terms of the relevance of prediction performance metrics, the underlying task is to classify 

labeled data according to common properties and thus make predictions about anomalies in 

energy consumption. Accordingly, only the classification metrics are relevant for the Produc-

tion Inc. use case. The regression metrics MAPE and RMSE can be neglected.  

To be able to determine the value of the artifacts according to Gregor und Hevner, the evalua-

tion is concluded with statements to their Validity, Utility, Efficacy, and Quality (2013). As 

shown by the underlying use case, the artifacts embodied by the benchmarking model and the 

list of benchmarking-relevant criteria are applicable according to the criterion of Validity from 

a theoretical point of view. Thus, in terms of Utility, best solutions can be achieved in a sys-

tematic way in productive applications. Regarding to the criteria Efficacy and Quality, no state-

ment can yet be made from a purely theoretical perspective in view of the still pending real-

world application. This evaluation step also helps to make more detailed statements about Va-

lidity and Utility regarding their characteristics. 
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6. Discussion 

Discussing the artifacts with research experts and applying them to the use case presented al-

lows us to address practical implications of the underlying research. First, we ran a structured 

approach to ML project implementation that provides a step-by-step guideline for practitioners 

from initial motivations to evaluation of results. As part of the approach, SML algorithms are 

benchmarked against each other so that users can identify the best algorithm solution for their 

underlying use case. By weighing up possible solutions, the user can achieve a deeper under-

standing of the use case and the project task. Second, we provide a holistic overview of dimen-

sions and criteria that are relevant for benchmarking SML algorithms and for the subsequent 

application. This provides the basis for comparing individual SML algorithms with respect to 

their performance according to predefined criteria. Since the dimensions and criteria are ge-

neric, as is the underlying procedure, their listing represents a toolbox that is used differently 

for individual use cases. Using the overview of benchmarking-relevant criteria, project manag-

ers can, for example, formulate concrete requirements for productive application. Third, the 

developed artifacts, embodied by the benchmarking model and the listed criteria included in 

the procedure, represent so-called meta-models, which can be supplemented by individual 

methods. For example, the Sustainable Machine Learning Balance Sheet can be used in the 

operation dimension to compare the energy savings achieved by a ML application with the 

energy consumption from model training as well as productive operation (Wenninger et al. 

2022). Thus, the developed artifacts provide a standardized and at the same time flexible ap-

proach to the user. The generic character can be applied to ML efforts in multiple areas. In 

summary, when applied in practice, our models can have a significant positive impact on project 

results and generate business value, be it in the development of productive solutions or in ad-

dressing prevailing challenges in the context of ML. 

However, our research as well as the promises in terms of practical improvements are also 

associated with limitations. Although our approach is to select SML algorithms as objectively 

as possible without situational tendencies by using predefined dimensions and criteria, a so-

called status quo bias of the users cannot be completely prevented by our structured approach. 

Hence, in the Algorithm Selection step, prior knowledge about certain algorithms already influ-

ences which algorithms are compared in terms of Benchmarking and which algorithm possibly 

performs best. Since the number of algorithms and their characteristics changes continuously, 

a comprehensive listing of possible algorithms would not be of long prevalence (Caruana and 
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Niculescu-Mizil 2006). In addition, the Design & Development step does not consider whether 

the underlying model is sufficiently trained. Accordingly, the case of model overfitting can 

occur with a high number of training cycles, so that the model delivers high prediction perfor-

mance on the training data but is not generic enough for the application on unknown data. 

Lastly, for the specific applicability of the overview on benchmarking-relevant criteria, as in 

the case of energy anomaly detection, expert advice may be necessary to identify the criteria 

important for the use case. 

In terms of further research, several challenges arise that can still be addressed. The first chal-

lenge is the individual weighting of benchmarking-relevant criteria in the sense of a quantitative 

decision model. This would allow the user to weight the existing overview of criteria using a 

gradation with respect to the importance of individual criteria. The need for individual 

weighting by the user could thus be eliminated. In addition, in view of the focus on SML the 

development of benchmarking models for UML and RL algorithms would be pending, whose 

steps in Design & Development and the associated performance metrics differ in comparison to 

SML. Also, testing the artifacts for validity on federated learning – a learning approach bound 

on local computers – can still be explored. Another aspect of further research, which will be 

addressed in the follow-up of this thesis, is the evaluation of underlying artifacts in the real 

world. Accordingly, different SML algorithms are to be compared with each other under con-

sideration of the benchmarking model when using the same data set. Based on the benchmark-

ing-relevant criteria the best SML algorithm shall be identified. The real-world application 

should also provide information about the criteria of Quality and Efficacy, which cannot yet be 

determined in the context of the theoretical evaluation of this thesis.  
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7. Conclusion 

Since there are many ML algorithms available today and their number is continuously increas-

ing, the question of which algorithm is most suitable for the underlying use case arises. Our 

research addresses this challenge through the development of two artifacts designed to assist 

practitioners in solving prevailing problems. The first artifact aims to provide a structured pro-

cess to make SML algorithms comparable in the sense of Benchmarking. The second artifact 

provides criteria with respect to which the algorithms can be compared objectively. Based on 

the predefined criteria, the most suitable SML algorithm for an individual use case can be iden-

tified. Since we are among the first to create a solution space for the underlying problem, we 

follow a DSR approach to ensure practical applicability by means of continuous evaluation 

schemes. Accordingly, the developed artifacts are especially aimed at practitioners and re-

searchers to give them a step-by-step approach to implement their specific ML project and gen-

erate business value. In general, we propose a paradigm shift in the selection of algorithms, 

shifting the focus from the prediction performance of ML algorithms to a holistic consideration 

of application-relevant factors. With respect to productive solutions, key decisions such as the 

selection of a specific algorithm cannot be made based on individual dimensions alone. By 

applying the developed artifacts according to the specifications listed in this thesis, a positive 

impact on projects in research and practice can be achieved and business value represented by 

powerful productive solutions can be generated. 
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Appendix A 

Measurement of the Prediction Performance Metric ROC-AUC 

The Area Under the Receiver Operating Characteristic Curve (ROC AUC) is a metric to deter-

mine the performance of a classifier. Graphically, the ROC curve plots the True Positive Rate 

(TPR) against the False Positive Rate (FPR). By determining the area under the ROC curve, 

the separation ability of a classifier to distinguish between classes at different thresholds can be 

illustrated (Hanley and McNeil 1982; Novakovic et al. 2017). An exemplary ROC curve is 

shown in the following figure. 

 

Figure A.1: Exemplary ROC-Curve 

(Agarwal 2019) 

The corresponding values of TPR and FPR are calculated as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹𝑃𝑅 =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)
 

Using the AUC, ROC curves can be compared with each other. The larger the AUC, the better 

the corresponding algorithm (Novakovic et al. 2017).  
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Appendix B 

Measurement of the Explainability Criterion Trust 

Trust in a ML application results from technical knowledge, following beliefs, and aspects of 

experience. The criterion includes specific factors such as the reliability, familiarity, and trace-

ability. With the help of a questionnaire, the degree of fulfillment of the factors can be queried 

accordingly by means of specifically tuned questions (Hoffman et al. 2018). With the aid of 

scales ranging from strong disagreement (1) to strong agreement (5), values can be assigned to 

the individual factors, which help to make the criterion of Trust measurable.  

 

(1) Does the ML application seem reliable to you regarding the fulfillment of the tasks at hand? 

1 2 3 4 5 

     

(2) Are the predictions/results of the ML application comprehensible from your point of view? 

1 2 3 4 5 

     

(3) Are you familiar with the decision-making processes underlying the ML application? 

1 2 3 4 5 

     

(4) Are actions prevailing in the ML application predictable from your perspective? 

1 2 3 4 5 

     

(5) Do you think the ML application consistently shows high performance? 

1 2 3 4 5 

     

 

The points of the individual questions are added together. The higher the total score, the better 

the Trust in relation to a given ML model. 
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Appendix C 

Measurement of the Explainability Criterion Informativeness 

ML Models can help people make decisions through their predictions. In doing so, it is indis-

pensable that people have essential information based on which a ML model acts (Barredo 

Arrieta et al. 2020). Since the information content of a ML model depends on the algorithm 

used and the domain knowledge of a human, questions are necessary to help the user determine 

the Informativeness of the underlying ML model (Hoffman et al. 2018; Li et al. 2020). Analo-

gous to the questionnaire for the criterion of Trust, the individual questions can again be 

equipped with scales ranging from strong disagreement (1) to strong agreement (5).  

 

(1) Is detailed information about the chain of reasoning to the final prediction traceable? 

1 2 3 4 5 

     

(2) Can new information be gained through the ML model in relation to the use-case at hand? 

1 2 3 4 5 

     

(3) Is the information provided by the ML model sufficient to justify decisions to be made? 

1 2 3 4 5 

     

 

The points of the individual questions are added together. The higher the total score, the better 

the Informativeness of a given ML model. In general, transparent models should be rated with 

a higher Informativeness, due to the low effort required for the acquisition of information. How-

ever, in the case of black-box models, whose level of information can only be increased by XAI 

methods such as LIME1, their nature as an opaque decision model should have a negative im-

pact on the degree of Informativeness.  

 

 
1 LIME involves modifying a dataset to identify effects on the output of a ML model and to infer its internal 

working mechanisms (Ribeiro et al. 2016). 


